Development of a deep‐learning model tailored for HER2 detection in breast cancer to aid pathologists in interpreting HER2‐low cases

乳腺癌 医学 一致性 免疫组织化学 肿瘤科 内科学 曲妥珠单抗 癌症 HER2/东北 人表皮生长因子受体2 病理 妇科
作者
Pierre‐Antoine Bannier,Glenn Broeckx,Loïc Herpin,Rémy Dubois,Lydwine Van Praet,Charles Maussion,Frederik Deman,Ellen Amonoo,Anca Mera,Jasmine Timbres,Cheryl Gillett,Elinor J. Sawyer,Patrycja Gazińska,Piotr Ziółkowski,Magali Lacroix‐Triki,Salgado Roberto,Sheeba Irshad
出处
期刊:Histopathology [Wiley]
卷期号:85 (3): 478-488 被引量:5
标识
DOI:10.1111/his.15274
摘要

Aims Over 50% of breast cancer cases are “Human epidermal growth factor receptor 2 (HER2) low breast cancer (BC)”, characterized by HER2 immunohistochemistry (IHC) scores of 1+ or 2+ alongside no amplification on fluorescence in situ hybridization (FISH) testing. The development of new anti‐HER2 antibody‐drug conjugates (ADCs) for treating HER2‐low breast cancers illustrates the importance of accurately assessing HER2 status, particularly HER2‐low breast cancer. In this study we evaluated the performance of a deep‐learning (DL) model for the assessment of HER2, including an assessment of the causes of discordances of HER2‐Null between a pathologist and the DL model. We specifically focussed on aligning the DL model rules with the ASCO/CAP guidelines, including stained cells' staining intensity and completeness of membrane staining. Methods and Results We trained a DL model on a multicentric cohort of breast cancer cases with HER2‐IHC scores ( n = 299). The model was validated on two independent multicentric validation cohorts ( n = 369 and n = 92), with all cases reviewed by three senior breast pathologists. All cases underwent a thorough review by three senior breast pathologists, with the ground truth determined by a majority consensus on the final HER2 score among the pathologists. In total, 760 breast cancer cases were utilized throughout the training and validation phases of the study. The model's concordance with the ground truth (ICC = 0.77 [0.68–0.83]; Fisher P = 1.32e‐10) is higher than the average agreement among the three senior pathologists (ICC = 0.45 [0.17–0.65]; Fisher P = 2e‐3). In the two validation cohorts, the DL model identifies 95% [93% ‐ 98%] and 97% [91% ‐ 100%] of HER2‐low and HER2‐positive tumours, respectively. Discordant results were characterized by morphological features such as extended fibrosis, a high number of tumour‐infiltrating lymphocytes, and necrosis, whilst some artefacts such as nonspecific background cytoplasmic stain in the cytoplasm of tumour cells also cause discrepancy. Conclusion Deep learning can support pathologists' interpretation of difficult HER2‐low cases. Morphological variables and some specific artefacts can cause discrepant HER2‐scores between the pathologist and the DL model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特的鹅发布了新的文献求助10
3秒前
豆豆哥发布了新的文献求助10
3秒前
高中生完成签到,获得积分10
4秒前
纯真问丝发布了新的文献求助10
4秒前
万能图书馆应助葛子豪采纳,获得10
4秒前
5秒前
135发布了新的文献求助10
5秒前
汉堡包应助大风采纳,获得10
6秒前
虚幻青筠完成签到 ,获得积分10
8秒前
风趣的凝雁完成签到,获得积分10
8秒前
NexusExplorer应助周城采纳,获得10
9秒前
Xman完成签到,获得积分10
12秒前
周三完成签到,获得积分10
12秒前
丘比特应助结实的泽洋采纳,获得10
12秒前
able完成签到,获得积分10
13秒前
15秒前
xzx完成签到 ,获得积分10
15秒前
wwwweer发布了新的文献求助10
17秒前
17秒前
蜡笔小鑫完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
周城完成签到,获得积分10
19秒前
Rhan发布了新的文献求助10
20秒前
daydream完成签到,获得积分10
21秒前
佛系少年发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
22秒前
周城发布了新的文献求助10
22秒前
吴宇哲发布了新的文献求助30
24秒前
千山孤风完成签到,获得积分0
25秒前
WZM关注了科研通微信公众号
25秒前
科研小趴菜完成签到,获得积分10
25秒前
纯真问丝完成签到,获得积分10
25秒前
于金正完成签到,获得积分10
26秒前
杨子墨发布了新的文献求助10
26秒前
Boubou发布了新的文献求助30
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4979637
求助须知:如何正确求助?哪些是违规求助? 4232294
关于积分的说明 13183117
捐赠科研通 4023347
什么是DOI,文献DOI怎么找? 2201297
邀请新用户注册赠送积分活动 1213760
关于科研通互助平台的介绍 1129980