Deep humoral profiling coupled to interpretable machine learning unveils diagnostic markers and pathophysiology of schistosomiasis

免疫学 同型 抗体 血吸虫病 生物 子类 抗原 抗体库 疾病 背景(考古学) 免疫系统 免疫球蛋白G 抗体效价 效价 单克隆抗体 医学 病理 蠕虫 古生物学
作者
Anushka Saha,Trirupa Chakraborty,Javad Rahimikollu,Hanxi Xiao,Lorena Bruna Pereira de Oliveira,Timothy W. Hand,Sukwan Handali,W. Evan Secor,Lúcia Alves de Oliveira Fraga,Jessica K. Fairley,Jishnu Das,Aniruddh Sarkar
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science (AAAS)]
卷期号:16 (765): eadk7832-eadk7832 被引量:8
标识
DOI:10.1126/scitranslmed.adk7832
摘要

Schistosomiasis, a highly prevalent parasitic disease, affects more than 200 million people worldwide. Current diagnostics based on parasite egg detection in stool detect infection only at a late stage, and current antibody-based tests cannot distinguish past from current infection. Here, we developed and used a multiplexed antibody profiling platform to obtain a comprehensive repertoire of antihelminth humoral profiles including isotype, subclass, Fc receptor (FcR) binding, and glycosylation profiles of antigen-specific antibodies. Using Essential Regression (ER) and SLIDE, interpretable machine learning methods, we identified latent factors (context-specific groups) that move beyond biomarkers and provide insights into the pathophysiology of different stages of schistosome infection. By comparing profiles of infected and healthy individuals, we identified modules with unique humoral signatures of active disease, including hallmark signatures of parasitic infection such as elevated immunoglobulin G4 (IgG4). However, we also captured previously uncharacterized humoral responses including elevated FcR binding and specific antibody glycoforms in patients with active infection, helping distinguish them from those without active infection but with equivalent antibody titers. This signature was validated in an independent cohort. Our approach also uncovered two distinct endotypes, nonpatent infection and prior infection, in those who were not actively infected. Higher amounts of IgG1 and FcR1/FcR3A binding were also found to be likely protective of the transition from nonpatent to active infection. Overall, we unveiled markers for antibody-based diagnostics and latent factors underlying the pathogenesis of schistosome infection. Our results suggest that selective antigen targeting could be useful in early detection, thus controlling infection severity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
驿路梨花完成签到,获得积分10
刚刚
Lilies完成签到 ,获得积分10
刚刚
风趣亦巧完成签到 ,获得积分10
刚刚
刚刚
黄景瑜完成签到,获得积分20
刚刚
伶俐绿柏完成签到 ,获得积分10
1秒前
科研通AI6应助听风采纳,获得10
1秒前
王子夫完成签到,获得积分10
1秒前
1秒前
吃饱就睡完成签到,获得积分10
1秒前
傻傻的孤丹完成签到,获得积分10
1秒前
充电宝应助钦川采纳,获得10
2秒前
苻天寿完成签到,获得积分10
2秒前
个性尔槐完成签到,获得积分10
2秒前
2秒前
可可发布了新的文献求助10
3秒前
幽默黄布发布了新的文献求助10
3秒前
专注的丹寒完成签到,获得积分10
3秒前
3秒前
无奈的道天完成签到,获得积分10
4秒前
4秒前
SYBH发布了新的文献求助10
4秒前
444发布了新的文献求助30
5秒前
chendumo完成签到,获得积分10
5秒前
xkk完成签到,获得积分10
6秒前
QQ完成签到,获得积分10
6秒前
青藤发布了新的文献求助10
6秒前
阿吟完成签到,获得积分10
6秒前
cdx完成签到,获得积分10
6秒前
Ronggaz发布了新的文献求助10
6秒前
无花果应助紧张的冷卉采纳,获得10
6秒前
林小不脏完成签到,获得积分10
6秒前
CodeCraft应助崔福阔采纳,获得10
7秒前
Yiran完成签到,获得积分10
7秒前
小马要努力完成签到,获得积分10
7秒前
7秒前
肖志勇完成签到,获得积分10
7秒前
Lawgh发布了新的文献求助10
7秒前
田様应助liyihua采纳,获得30
8秒前
caocao发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316202
求助须知:如何正确求助?哪些是违规求助? 4458692
关于积分的说明 13871829
捐赠科研通 4348587
什么是DOI,文献DOI怎么找? 2388260
邀请新用户注册赠送积分活动 1382364
关于科研通互助平台的介绍 1351755