A comparison of models for predicting the maximum spreading factor in droplet impingement

物理 机械 统计物理学
作者
Wenlong Yu,Bo Li,Shuyu Lin,Wenhao Wang,Shuo Chen,Damin Cao,Jiayi Zhao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (7) 被引量:7
标识
DOI:10.1063/5.0208679
摘要

The maximum spreading factor during droplet impact on a dry surface is a pivotal parameter of a range of applications, including inkjet printing, anti-icing, and micro-droplet transportation. It is determined by a combination of the inertial force, viscous force, surface tension, and fluid–solid interaction. There are currently a series of qualitative and quantitative prediction models for the maximum spreading factor rooted in both momentum and energy conservation. However, the performance of these models on consistent experimental samples remains ambiguous. In this work, a comprehensive set of 785 experimental samples spanning the last four decades is compiled. These samples encompass Weber numbers ranging from 0.038 to 2447.7 and Reynolds numbers from 9 to 34 339. A prediction model is introduced that employs a neural network, which achieves an average relative error of less than 16.6% with a standard error of 0.018 08 when applied to the test set. Following this, a fair comparison is presented of the accuracy, generality, and stability of different prediction models. Although the neural network model provides superior accuracy and generality, its stability is weaker than that of Scheller's We-Re-dependent formula, chiefly due to the absence of physical constraints. Subsequently, a physics-informed prediction model is introduced by considering a physical loss term. This model demonstrates comprehensive enhancements compared to the original neural network, and the average relative and standard errors for this model are reduce to 13.6% and 0.010 59, respectively. This novel model should allow for the rapid and precise prediction of the maximum spreading factor across a broad range of parameters for various applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小智完成签到,获得积分10
1秒前
1秒前
Elena完成签到 ,获得积分10
1秒前
Ruan_zzz完成签到 ,获得积分10
1秒前
zyz发布了新的文献求助20
2秒前
2秒前
rudy发布了新的文献求助10
2秒前
3秒前
单纯晋鹏发布了新的文献求助10
3秒前
桐桐应助Aimeee采纳,获得10
4秒前
加油少年发布了新的文献求助10
4秒前
X4J完成签到,获得积分10
5秒前
不爱吃鱼发布了新的文献求助10
6秒前
6秒前
6秒前
852应助飞飞鱼采纳,获得10
8秒前
FashionBoy应助求神拜佛采纳,获得10
8秒前
小智发布了新的文献求助10
9秒前
FashionBoy应助阳光羽毛采纳,获得30
10秒前
10秒前
帅气的绿凝完成签到,获得积分10
11秒前
zyz完成签到,获得积分20
12秒前
单纯晋鹏完成签到,获得积分10
15秒前
16秒前
16秒前
彩色的续发布了新的文献求助10
17秒前
香蕉觅云应助羊大侠采纳,获得10
19秒前
BowieHuang应助路由器采纳,获得10
19秒前
yuheng发布了新的文献求助20
19秒前
量子星尘发布了新的文献求助10
21秒前
妙海完成签到,获得积分10
22秒前
残剑月应助MaLou采纳,获得10
22秒前
22秒前
谨慎的胡萝卜完成签到,获得积分10
23秒前
灵巧剑心发布了新的文献求助10
23秒前
深情安青应助少年愁采纳,获得10
24秒前
科目三应助杨冰采纳,获得10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601337
求助须知:如何正确求助?哪些是违规求助? 4686845
关于积分的说明 14846441
捐赠科研通 4680565
什么是DOI,文献DOI怎么找? 2539355
邀请新用户注册赠送积分活动 1506182
关于科研通互助平台的介绍 1471283