Solution processable polypyrrole nanotubes as an alternative hole transporting material in perovskite solar cells

聚吡咯 材料科学 钙钛矿(结构) 光活性层 能量转换效率 导电聚合物 化学工程 兴奋剂 太阳能电池 电致发光 溶解过程 光伏系统 图层(电子) 纳米技术 聚合物 聚合物太阳能电池 光电子学 复合材料 聚合 工程类 生态学 生物
作者
P. Jha,S. P. Koiry,C. Sridevi,Deeksha Gupta,P. Veerender,R.K. Lenka,A. K. Chauhan
出处
期刊:Materials today communications [Elsevier]
卷期号:35: 105994-105994 被引量:1
标识
DOI:10.1016/j.mtcomm.2023.105994
摘要

The major challenge towards the commercialization of perovskite solar cells is to find an alternative stable, low-cost, and solution-processible hole transporting material to unstable and expensive 2,2’,7,7’-tetrakis-(N,N-di-p-methoxyphenylamine)− 9,9’- spirobifluorene. Despite having all prerequisite properties like the ease of synthesis, low cost, tunability of hole conductivity, the conducting polymers such as polypyrrole are hardly being explored extensively as hole-transporting materials because of their insolubility in common organic solvents. Here, a colloidal solution of hydrophobic polypyrrole nanotubes co-doped with sodium dodecylbenzenesulfonate has been developed and explored for the hole transporting layer in methylammonium lead iodide-based perovskite solar cells. The best device has shown a power conversion efficiency of 7.3% at ambient conditions and without sealing. In terms of stability, the unsealed polypyrrole-based devices maintaining 85% of the initial efficiency at relative humidity 75–80 % with over 120 h have outperformed the unencapsulated poly(3-hexylthiophene)- based devices (average power conversion efficiency ∼11 %) fabricated using the same procedure and measured under same conditions. Frequency response analysis and electroluminescent imaging reveal that the photovoltaic performance of the polypyrrole-based cells can further be improved by reducing series resistance arising due to hole transporting layers. These studies show the polypyrrole colloids as a promising low-cost solution for the hole transporting layer in perovskite solar cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
666完成签到,获得积分0
2秒前
4秒前
4秒前
zuo完成签到,获得积分10
7秒前
缪连虎发布了新的文献求助10
8秒前
hans发布了新的文献求助10
8秒前
巴山夜雨完成签到,获得积分10
8秒前
小高找文献关注了科研通微信公众号
10秒前
EarlyBird完成签到,获得积分10
10秒前
粗心的初南完成签到,获得积分10
13秒前
14秒前
14秒前
2323完成签到,获得积分10
14秒前
16秒前
DDONG826发布了新的文献求助10
18秒前
18秒前
19秒前
李健应助114210采纳,获得10
21秒前
damnxas完成签到,获得积分10
24秒前
熬夜猫完成签到,获得积分10
25秒前
26秒前
大个应助汤绮菱采纳,获得10
27秒前
iy完成签到,获得积分10
27秒前
汀上白沙完成签到,获得积分10
27秒前
DDONG826完成签到,获得积分10
28秒前
28秒前
28秒前
完美世界应助墨染清风凉采纳,获得10
30秒前
30秒前
烟花应助寂寞的强炫采纳,获得10
31秒前
32秒前
KevinHill0924发布了新的文献求助10
33秒前
111完成签到,获得积分20
33秒前
33秒前
33秒前
阔达访旋完成签到,获得积分10
34秒前
夏xia发布了新的文献求助10
37秒前
墨染清风凉完成签到,获得积分10
37秒前
幼稚园搞磕研完成签到,获得积分10
38秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 1000
Essentials of thematic analysis 800
ANDA Litigation: Strategies and Tactics for Pharmaceutical Patent Litigators Second 版本 500
Exact Solutions of the Discrete Heat Conduction Equations 500
A labyrinthodont from the Lower Gondwana of Kashmir and a new edestid from the Permian of the Salt Range 500
中国志愿服务发展报告(2022~2023) 300
The Commercialization of Pharmaceutical Patents in China (Asian Commercial, Financial and Economic Law and Policy series) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2331739
求助须知:如何正确求助?哪些是违规求助? 2015768
关于积分的说明 5050617
捐赠科研通 1769627
什么是DOI,文献DOI怎么找? 886359
版权声明 555529
科研通“疑难数据库(出版商)”最低求助积分说明 471928