期限(时间)
电力系统
计算机科学
人工神经网络
需求预测
功率(物理)
能源消耗
电力需求
短时记忆
功率消耗
可靠性工程
循环神经网络
实时计算
人工智能
运筹学
工程类
电气工程
物理
量子力学
作者
Truong Hoang Bao Huy,Dieu Ngoc Vo,Hung Duc Nguyen,Phuoc Hoa Truong,Khanh Tuan Dang,Khoa Hoang Truong
标识
DOI:10.1109/icsse58758.2023.10227203
摘要
As energy demand increases rapidly, short-term load forecasting is becoming progressively vital in power system dispatch and demand response. This study proposes a short-term load forecasting approach for the power system in Vietnam. In this regard, a gated recurrent unit-based deep learning model is applied to use the historical load sequences to forecast the single-step and multi-step ahead values of the load consumption. The hourly load consumption dataset is provided by Ho Chi Minh City Power Corporation (EVNHCMC). Simulation results prove the effectiveness of the developed prediction algorithm for short-term load forecasting, especially for multi-step forecasting.
科研通智能强力驱动
Strongly Powered by AbleSci AI