辅助
智能材料
材料科学
机器人
超材料
软机器人
有效载荷(计算)
爬行
铁磁性
计算机科学
机械工程
磁场
纳米技术
物理
工程类
人工智能
光电子学
复合材料
计算机网络
解剖
网络数据包
医学
量子力学
磁化
作者
Benjamín Silva,Joseph Govan,Juan Cristóbal Zagal,Bruno Grossi,A. Roldán-Molina,Álvaro S. Núñez,Daniel Acuña,Humberto Palza
标识
DOI:10.1016/j.matdes.2023.112262
摘要
Several efforts have been made to develop walking smart soft robots through different strategies such as the use of complex aligned magneto-active materials. Here, we show a simple approach for the design of a smart soft robot using an elastomer film with randomly distributed ferrimagnetic nanoparticles able to be remotely controlled by a magnetic field. The magneto-active robot has a rotating-square kirigami geometry resulting in a flexible smart auxetic metamaterial (i.e., a negative Poisson-ratio structure). Alongside the standard translational locomotion on a smooth-surface under a steady magnetic force, the auxetic kirigami structure mimics the crawling-locomotion of worms over a high-roughness surface under an oscillatory horizontal field, even climbing vertical-obstacles. A theoretical understanding for this new locomotion mechanism stresses the relevance of the kirigami metamaterial design and the ferrimagnetic response of the particles. The soft robot can also transport a payload having weights higher than the weight of the smart elastomeric film. The smart auxetic structure further presents a rolling locomotion by properly orienting the magnetic field, meaning multiple remote locomotion mechanisms.
科研通智能强力驱动
Strongly Powered by AbleSci AI