Eff-AQI: An Efficient CNN-Based Model for Air Pollution Estimation: A Study Case in India

空气污染 估计 计算机科学 大气模式 污染 环境科学 气象学 地理 工程类 系统工程 生态学 生物 有机化学 化学
作者
Sapdo Utomo,Adarsh Rouniyar,Guo Hao Jiang,Chun Hao Chang,Kai Chun Tang,Hsiu-Chun Hsu,Pao‐Ann Hsiung
标识
DOI:10.1145/3582515.3609531
摘要

One of the most dangerous problems facing humanity is air pollution. According to GBD estimates, poor air quality and indoor air pollution cause nearly 2 million premature deaths in India. Air quality monitoring stations are expensive to install. These issues require a cost-effective resolution. India's energy infrastructure requires a low-power solution in order to prevent new issues while resolving old ones. Image-based air pollution detection using artificial intelligence has become a popular option. Nevertheless, two issues remain: There are few image-based air pollution data sets. Existing methods utilize a model with numerous parameters, which requires a great deal of processing power. Based on that, we developed Eff-AQI, a reliable artificial intelligence model with 1.9 million parameters. The proposed model could obtain the following results: 9.56 RMSE, 0.99 R2, 89.92% balanced accuracy, and 89.38% accuracy for AQI estimation; 14.62 RMSE, 0.99 R2, 90.56% balanced accuracy, and 91.83% accuracy for PM2.5 estimation; and 14.40 RMSE, 0.98 R2, 96.25% balanced accuracy, and 95.42% accuracy for PM10 estimation. The proposed model outperformed DOViT, the model with the highest accuracy among all surveyed SoTAs, by 2.64 points, and it has 46.32 times smaller parameters compared to DOViT. The proposed model can achieve the same R2 score with 54.16 times smaller parameters than Ensemble DNN. We also make available on Kaggle the novel air pollution image data with the corresponding labels: AQI, PM2.5, PM10, O3, CO, SO2, and NO2. The investigation revealed that the majority of SoTAs could utilize the dataset to enhance performance. The proposed model is more accurate and has fewer parameters than SoTAs. Environmental sustainability and reduced pollution are also involved. Increasing society's or stakeholders' high-confidence understanding of air pollution situations in order to develop effective and efficient mitigation solutions. This initiative is beneficial to AI for the social good and the Sustainable Development Goals, especially SDG 3, "Good Health and Well-Being," and SDG 11, "Sustainable Cities and Communities."
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助关包子采纳,获得10
刚刚
科研rain完成签到 ,获得积分10
刚刚
北栀发布了新的文献求助10
1秒前
1秒前
钮钴禄甄嬛完成签到,获得积分10
1秒前
着急的傲菡完成签到,获得积分10
1秒前
书芹完成签到,获得积分10
2秒前
木头人完成签到,获得积分10
2秒前
wennuan0913完成签到 ,获得积分10
2秒前
2秒前
天天向上发布了新的文献求助10
2秒前
3秒前
3秒前
枕安发布了新的文献求助20
4秒前
4秒前
嘟嘟发布了新的文献求助10
4秒前
满家归寻发布了新的文献求助10
5秒前
天天快乐应助刻苦的发带采纳,获得10
6秒前
南浔完成签到 ,获得积分10
7秒前
7秒前
7秒前
Ava应助Shilly采纳,获得10
8秒前
fjh发布了新的文献求助10
9秒前
9秒前
南栀发布了新的文献求助30
9秒前
9秒前
只道寻常完成签到,获得积分10
10秒前
10秒前
文艺点点完成签到,获得积分10
10秒前
10秒前
传奇3应助无私语儿采纳,获得10
11秒前
zx完成签到 ,获得积分10
11秒前
小乐完成签到 ,获得积分10
12秒前
关包子完成签到,获得积分10
12秒前
微兔小妹完成签到 ,获得积分10
12秒前
赘婿应助Gao采纳,获得10
13秒前
研友_ZAeR6Z发布了新的文献求助10
13秒前
正直三颜完成签到,获得积分10
13秒前
孙皓然完成签到 ,获得积分10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785157
求助须知:如何正确求助?哪些是违规求助? 3330567
关于积分的说明 10247380
捐赠科研通 3046041
什么是DOI,文献DOI怎么找? 1671820
邀请新用户注册赠送积分活动 800855
科研通“疑难数据库(出版商)”最低求助积分说明 759730