COVID-19 Chest X-Ray Classification Using Residual Network

2019年冠状病毒病(COVID-19) 射线照相术 计算机科学 人工智能 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 学习迁移 2019-20冠状病毒爆发 残余物 医学 放射科 模式识别(心理学) 病理 算法 爆发 传染病(医学专业) 疾病
作者
Xin Tan,Jit Yan Lim,Kian Ming Lim,Chin Poo Lee
标识
DOI:10.1109/icoict58202.2023.10262734
摘要

In 2019, the Covid-19 pandemic has spread across the globe and causing significant disruptions to daily life. Those who have tested positive for Covid-19 may experience long-term respiratory problems as the virus can damage the lungs. Specifically, patients who have recovered from Covid-19 may develop white spots on their lungs. This can be difficult to distinguish from normal lung tissue. Consequently, researchers have conducted extensive studies on image classification of Covid-19 chest x-rays, which has become a popular topic of investigation over the past two years. In this research, four datasets were utilized for image classification including COVID-19 Radiography, Chest X-ray, COVID-19, and CoronaHack datasets. All these datasets were sourced from Kaggle. The pre-trained ResNet152 model was used in conjunction with a transfer learning technique. Results indicated that the pre-trained ResNet152 with early stopping provided the highest accuracy among the techniques tested. In this research, the COVID-19 Radiography dataset achieved an accuracy of 95.61%, while the Chest X-ray dataset achieved an accuracy of 97.59%. CoronaHack dataset and COVID-19 X-ray dataset achieved accuracies of 93.59% and 100%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华国锋应助通行证采纳,获得20
刚刚
刚刚
清秀寇发布了新的文献求助10
1秒前
2秒前
一二发布了新的文献求助30
4秒前
oranka1完成签到,获得积分10
6秒前
Holland应助炙热芝采纳,获得10
6秒前
coolkid应助科研通管家采纳,获得10
8秒前
游大达完成签到,获得积分0
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
Mercury完成签到 ,获得积分10
9秒前
9秒前
9秒前
青筠完成签到,获得积分10
9秒前
CHENCHENG完成签到 ,获得积分10
12秒前
12秒前
14秒前
完美世界应助翊然甜周采纳,获得10
17秒前
自然怀寒发布了新的文献求助10
18秒前
18秒前
轻松的绮菱完成签到,获得积分10
21秒前
21秒前
scabbard24发布了新的文献求助10
23秒前
DEI发布了新的文献求助30
23秒前
CipherSage应助知夏采纳,获得10
24秒前
felicity发布了新的文献求助10
24秒前
成诗怡完成签到,获得积分10
25秒前
赘婿应助明芷蝶采纳,获得10
26秒前
研友_VZG7GZ应助oldjeff采纳,获得10
26秒前
27秒前
27秒前
28秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845010
求助须知:如何正确求助?哪些是违规求助? 3387222
关于积分的说明 10548224
捐赠科研通 3107905
什么是DOI,文献DOI怎么找? 1712249
邀请新用户注册赠送积分活动 824304
科研通“疑难数据库(出版商)”最低求助积分说明 774683