Preoperative Discrimination of CDKN2A/B Homozygous Deletion Status in Isocitrate Dehydrogenase‐Mutant Astrocytoma: A Deep Learning‐Based Radiomics Model Using MRI

CDKN2A 异柠檬酸脱氢酶 接收机工作特性 星形细胞瘤 无线电技术 曼惠特尼U检验 医学 磁共振成像 IDH1 核医学 胶质瘤 肿瘤科 放射科 生物 突变体 内科学 癌症研究 物理 核磁共振 遗传学 癌症 基因
作者
Jueni Gao,Zhi Liu,Hongyu Pan,Xu Cao,Yubo Kan,Zhipeng Wen,Shanxiong Chen,Ming Wen,Liqiang Zhang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (5): 1655-1664 被引量:5
标识
DOI:10.1002/jmri.28945
摘要

Background Cyclin‐dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion has been verified as an independent and critical biomarker of negative prognosis and short survival in isocitrate dehydrogenase (IDH)‐mutant astrocytoma. Therefore, noninvasive and accurate discrimination of CDKN2A/B homozygous deletion status is essential for the clinical management of IDH‐mutant astrocytoma patients. Purpose To develop a noninvasive, robust preoperative model based on MR image features for discriminating CDKN2A/B homozygous deletion status of IDH‐mutant astrocytoma. Study Type Retrospective. Population Two hundred fifty‐one patients: 107 patients with CDKN2A/B homozygous deletion and 144 patients without CDKN2A/B homozygous deletion. Field Strength/Sequence:3.0 T/1.5 T Contrast‐enhanced T1‐weighted spin‐echo inversion recovery sequence (CE‐T1WI) and T2‐weighted fluid‐attenuation spin‐echo inversion recovery sequence (T2FLAIR). Assessment A total of 1106 radiomics and 1000 deep learning features extracted from CE‐T1WI and T2FLAIR were used to develop models to discriminate the CDKN2A/B homozygous deletion status. Radiomics models, deep learning‐based radiomics (DLR) models and the final integrated model combining radiomics features with deep learning features were developed and compared their preoperative discrimination performance. Statistical Testing Pearson chi‐square test and Mann Whitney U test were used for assessing the statistical differences in patients' clinical characteristics. The Delong test compared the statistical differences of receiver operating characteristic (ROC) curves and area under the curve (AUC) of different models. The significance threshold is P < 0.05. Results The final combined model (training AUC = 0.966; validation AUC = 0.935; test group: AUC = 0.943) outperformed the optimal models based on only radiomics or DLR features (training: AUC = 0.916 and 0.952; validation: AUC = 0.886 and 0.912; test group: AUC = 0.862 and 0.902). Data Conclusion Whether based on a single sequence or a combination of two sequences, radiomics and DLR models have achieved promising performance in assessing CDKN2A/B homozygous deletion status. However, the final model combining both deep learning and radiomics features from CE‐T1WI and T2FLAIR outperformed the optimal radiomics or DLR model. Evidence Level 4 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
李Aa发布了新的文献求助10
刚刚
xwrpp发布了新的文献求助10
1秒前
李健应助jessiiii采纳,获得30
1秒前
王一博发布了新的文献求助10
1秒前
爰采唐矣发布了新的文献求助10
2秒前
深情安青应助知性的绮玉采纳,获得10
2秒前
CipherSage应助不倦采纳,获得10
2秒前
小番茄完成签到,获得积分10
3秒前
烟花应助聪明紫山采纳,获得10
4秒前
4秒前
5秒前
桃子大亨发布了新的文献求助10
7秒前
wangayting完成签到,获得积分10
8秒前
AAA发布了新的文献求助30
10秒前
糟糕的铁锤给堡堡的求助进行了留言
11秒前
熊子文发布了新的文献求助10
11秒前
11秒前
11秒前
Jasper应助李Aa采纳,获得10
12秒前
12秒前
充电宝应助爰采唐矣采纳,获得10
13秒前
小徐徐爱学习完成签到,获得积分10
13秒前
淡淡土豆应助莫科采纳,获得10
13秒前
peng完成签到,获得积分10
13秒前
花儿有点懒完成签到,获得积分10
14秒前
kuangweiming完成签到,获得积分10
15秒前
15秒前
文献无碍发布了新的文献求助10
15秒前
柯瑾完成签到,获得积分10
15秒前
JamesPei应助zongyuan0131采纳,获得10
15秒前
平常安完成签到,获得积分10
16秒前
16秒前
16秒前
研友_VZG7GZ应助111111采纳,获得10
20秒前
20秒前
CipherSage应助知性的不二采纳,获得10
20秒前
21秒前
zlll完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5514964
求助须知:如何正确求助?哪些是违规求助? 4608586
关于积分的说明 14512171
捐赠科研通 4544721
什么是DOI,文献DOI怎么找? 2490227
邀请新用户注册赠送积分活动 1472100
关于科研通互助平台的介绍 1443871