清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-modal graph neural network for early diagnosis of Alzheimer's disease from sMRI and PET scans

计算机科学 卷积神经网络 模态(人机交互) 神经影像学 人工智能 深度学习 图形 情态动词 正电子发射断层摄影术 人工神经网络 机器学习 模式识别(心理学) 医学 放射科 理论计算机科学 精神科 化学 高分子化学
作者
Yanteng Zhang,Xiaohai He,Yi Hao Chan,Qizhi Teng,Jagath C. Rajapakse
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:164: 107328-107328 被引量:37
标识
DOI:10.1016/j.compbiomed.2023.107328
摘要

In recent years, deep learning models have been applied to neuroimaging data for early diagnosis of Alzheimer's disease (AD). Structural magnetic resonance imaging (sMRI) and positron emission tomography (PET) images provide structural and functional information about the brain, respectively. Combining these features leads to improved performance than using a single modality alone in building predictive models for AD diagnosis. However, current multi-modal approaches in deep learning, based on sMRI and PET, are mostly limited to convolutional neural networks, which do not facilitate integration of both image and phenotypic information of subjects. We propose to use graph neural networks (GNN) that are designed to deal with problems in non-Euclidean domains. In this study, we demonstrate how brain networks are created from sMRI or PET images and can be used in a population graph framework that combines phenotypic information with imaging features of the brain networks. Then, we present a multi-modal GNN framework where each modality has its own branch of GNN and a technique that combines the multi-modal data at both the level of node vectors and adjacency matrices. Finally, we perform late fusion to combine the preliminary decisions made in each branch and produce a final prediction. As multi-modality data becomes available, multi-source and multi-modal is the trend of AD diagnosis. We conducted explorative experiments based on multi-modal imaging data combined with non-imaging phenotypic information for AD diagnosis and analyzed the impact of phenotypic information on diagnostic performance. Results from experiments demonstrated that our proposed multi-modal approach improves performance for AD diagnosis. Our study also provides technical reference and support the need for multivariate multi-modal diagnosis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
7秒前
黄辉冯发布了新的文献求助10
12秒前
贰鸟应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
贰鸟应助科研通管家采纳,获得10
27秒前
27秒前
Akim应助科研通管家采纳,获得10
27秒前
余慵慵完成签到 ,获得积分10
39秒前
研友_LJGXgn完成签到,获得积分10
52秒前
量子星尘发布了新的文献求助10
1分钟前
tyro完成签到,获得积分10
1分钟前
husky完成签到,获得积分10
1分钟前
心信鑫完成签到 ,获得积分10
1分钟前
Kevin完成签到,获得积分10
1分钟前
zndxlsb完成签到,获得积分10
1分钟前
yzhilson完成签到 ,获得积分0
2分钟前
mc完成签到 ,获得积分10
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
贰鸟应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
李爱国应助科研通管家采纳,获得10
2分钟前
斯文败类应助科研通管家采纳,获得10
2分钟前
滕皓轩发布了新的文献求助50
2分钟前
量子星尘发布了新的文献求助10
2分钟前
苗条菠萝完成签到,获得积分10
2分钟前
huanghe完成签到,获得积分10
2分钟前
zhilianghui0807完成签到 ,获得积分0
2分钟前
苗条菠萝发布了新的文献求助10
2分钟前
2分钟前
不安的听寒完成签到 ,获得积分10
3分钟前
酷酷的如波完成签到 ,获得积分10
3分钟前
zzz完成签到,获得积分10
3分钟前
猫小乐C完成签到,获得积分10
3分钟前
3分钟前
小幸运完成签到,获得积分10
3分钟前
调皮的栾发布了新的文献求助10
3分钟前
王王的狗子完成签到 ,获得积分10
3分钟前
欢呼香完成签到 ,获得积分10
3分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
変形菌ミクソヴァース 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4256630
求助须知:如何正确求助?哪些是违规求助? 3789070
关于积分的说明 11888918
捐赠科研通 3438529
什么是DOI,文献DOI怎么找? 1886913
邀请新用户注册赠送积分活动 938111
科研通“疑难数据库(出版商)”最低求助积分说明 843716