Multi-modal graph neural network for early diagnosis of Alzheimer's disease from sMRI and PET scans

计算机科学 卷积神经网络 模态(人机交互) 神经影像学 人工智能 深度学习 图形 情态动词 正电子发射断层摄影术 人工神经网络 机器学习 模式识别(心理学) 医学 放射科 理论计算机科学 精神科 化学 高分子化学
作者
Yanteng Zhang,Xiaohai He,Yi Hao Chan,Qizhi Teng,Jagath C. Rajapakse
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:164: 107328-107328 被引量:19
标识
DOI:10.1016/j.compbiomed.2023.107328
摘要

In recent years, deep learning models have been applied to neuroimaging data for early diagnosis of Alzheimer's disease (AD). Structural magnetic resonance imaging (sMRI) and positron emission tomography (PET) images provide structural and functional information about the brain, respectively. Combining these features leads to improved performance than using a single modality alone in building predictive models for AD diagnosis. However, current multi-modal approaches in deep learning, based on sMRI and PET, are mostly limited to convolutional neural networks, which do not facilitate integration of both image and phenotypic information of subjects. We propose to use graph neural networks (GNN) that are designed to deal with problems in non-Euclidean domains. In this study, we demonstrate how brain networks are created from sMRI or PET images and can be used in a population graph framework that combines phenotypic information with imaging features of the brain networks. Then, we present a multi-modal GNN framework where each modality has its own branch of GNN and a technique that combines the multi-modal data at both the level of node vectors and adjacency matrices. Finally, we perform late fusion to combine the preliminary decisions made in each branch and produce a final prediction. As multi-modality data becomes available, multi-source and multi-modal is the trend of AD diagnosis. We conducted explorative experiments based on multi-modal imaging data combined with non-imaging phenotypic information for AD diagnosis and analyzed the impact of phenotypic information on diagnostic performance. Results from experiments demonstrated that our proposed multi-modal approach improves performance for AD diagnosis. Our study also provides technical reference and support the need for multivariate multi-modal diagnosis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chief完成签到,获得积分0
7秒前
7秒前
9秒前
12秒前
14秒前
Souliko发布了新的文献求助10
16秒前
九思给九思的求助进行了留言
16秒前
LIJINGGE发布了新的文献求助10
20秒前
xiaopingbing完成签到 ,获得积分10
24秒前
雪白的映菱完成签到 ,获得积分10
25秒前
29秒前
29秒前
研友_LwbYv8完成签到,获得积分10
30秒前
風起天岚完成签到,获得积分10
31秒前
大模型应助科研通管家采纳,获得10
33秒前
慕青应助科研通管家采纳,获得10
33秒前
Ava应助科研通管家采纳,获得10
33秒前
Owen应助科研通管家采纳,获得10
33秒前
慕青应助科研通管家采纳,获得10
33秒前
上官若男应助科研通管家采纳,获得10
33秒前
星辰大海应助科研通管家采纳,获得10
34秒前
星辰大海应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
34秒前
长情的书包完成签到,获得积分10
34秒前
LIJINGGE发布了新的文献求助10
35秒前
研友_LwbYv8发布了新的文献求助10
36秒前
Suica完成签到 ,获得积分10
36秒前
bi8bo完成签到,获得积分10
38秒前
源缘完成签到 ,获得积分10
38秒前
健壮问兰完成签到 ,获得积分10
38秒前
38秒前
40秒前
40秒前
orixero应助Oliver采纳,获得10
43秒前
星辰大海应助SS采纳,获得10
44秒前
bi8bo发布了新的文献求助10
44秒前
46秒前
刘雪晴完成签到 ,获得积分10
50秒前
九思发布了新的文献求助10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778743
求助须知:如何正确求助?哪些是违规求助? 3324286
关于积分的说明 10217819
捐赠科研通 3039427
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798533
科研通“疑难数据库(出版商)”最低求助积分说明 758401