Construction and application of knowledge graph for construction accidents based on deep learning

施工现场安全 领域知识 计算机科学 知识表示与推理 知识抽取 知识工程 知识管理 人工智能 工程类 结构工程
作者
Wenjing Wu,Caifeng Wen,Qi Yuan,Qiulan Chen,Yunzhong Cao
出处
期刊:Engineering, Construction and Architectural Management [Emerald Publishing Limited]
卷期号:32 (2): 1097-1121 被引量:14
标识
DOI:10.1108/ecam-03-2023-0255
摘要

Purpose Learning from safety accidents and sharing safety knowledge has become an important part of accident prevention and improving construction safety management. Considering the difficulty of reusing unstructured data in the construction industry, the knowledge in it is difficult to be used directly for safety analysis. The purpose of this paper is to explore the construction of construction safety knowledge representation model and safety accident graph through deep learning methods, extract construction safety knowledge entities through BERT-BiLSTM-CRF model and propose a data management model of data–knowledge–services. Design/methodology/approach The ontology model of knowledge representation of construction safety accidents is constructed by integrating entity relation and logic evolution. Then, the database of safety incidents in the architecture, engineering and construction (AEC) industry is established based on the collected construction safety incident reports and related dispute cases. The construction method of construction safety accident knowledge graph is studied, and the precision of BERT-BiLSTM-CRF algorithm in information extraction is verified through comparative experiments. Finally, a safety accident report is used as an example to construct the AEC domain construction safety accident knowledge graph (AEC-KG), which provides visual query knowledge service and verifies the operability of knowledge management. Findings The experimental results show that the combined BERT-BiLSTM-CRF algorithm has a precision of 84.52%, a recall of 92.35%, and an F1 value of 88.26% in named entity recognition from the AEC domain database. The construction safety knowledge representation model and safety incident knowledge graph realize knowledge visualization. Originality/value The proposed framework provides a new knowledge management approach to improve the safety management of practitioners and also enriches the application scenarios of knowledge graph. On the one hand, it innovatively proposes a data application method and knowledge management method of safety accident report that integrates entity relationship and matter evolution logic. On the other hand, the legal adjudication dimension is innovatively added to the knowledge graph in the construction safety field as the basis for the postincident disposal measures of safety accidents, which provides reference for safety managers' decision-making in all aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助冰冷的滚烫采纳,获得10
刚刚
XylonYu发布了新的文献求助10
1秒前
乐乐应助康娜采纳,获得10
1秒前
淡淡夕阳发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
4秒前
脑洞疼应助嘻嘻嘻采纳,获得10
4秒前
wanci应助勤奋西牛采纳,获得10
6秒前
6秒前
科研通AI5应助迷路采珊采纳,获得10
7秒前
王歪歪完成签到,获得积分10
7秒前
8秒前
SciGPT应助bofu采纳,获得10
8秒前
地三鲜发布了新的文献求助10
8秒前
汉堡包应助丰富的秋烟采纳,获得10
9秒前
9秒前
ilzhuzhu发布了新的文献求助10
9秒前
9秒前
10秒前
正直灵雁完成签到,获得积分10
11秒前
未来发布了新的文献求助10
11秒前
cdh1994应助布洛芬采纳,获得10
12秒前
情怀应助快不了采纳,获得10
12秒前
12秒前
小二郎应助荷兰香猪采纳,获得10
13秒前
李爱国应助Kahanto采纳,获得10
13秒前
14秒前
bofu发布了新的文献求助10
14秒前
靳亮完成签到,获得积分20
14秒前
14秒前
14秒前
寒冷平松完成签到,获得积分10
14秒前
北北发布了新的文献求助10
15秒前
LJH完成签到,获得积分20
15秒前
heting发布了新的文献求助10
16秒前
17秒前
17秒前
愤怒的乐松应助嘿小白采纳,获得10
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818315
求助须知:如何正确求助?哪些是违规求助? 3361444
关于积分的说明 10412885
捐赠科研通 3079695
什么是DOI,文献DOI怎么找? 1691656
邀请新用户注册赠送积分活动 814517
科研通“疑难数据库(出版商)”最低求助积分说明 768189