Collagen fiber centerline tracking in fibrotic tissue via deep neural networks with variational autoencoder-based synthetic training data generation

人工智能 深度学习 自编码 合成数据 管道(软件) 计算机科学 人工神经网络 纤维 胶原纤维 模式识别(心理学) 计算机视觉 材料科学 解剖 生物 复合材料 程序设计语言
作者
Hyojoon Park,Bin Li,Yuming Liu,Michael S. Nelson,Helen M. Wilson,Eftychios Sifakis,Kevin W. Eliceiri
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:90: 102961-102961 被引量:4
标识
DOI:10.1016/j.media.2023.102961
摘要

The role of fibrillar collagen in the tissue microenvironment is critical in disease contexts ranging from cancers to chronic inflammations, as evidenced by many studies. Quantifying fibrillar collagen organization has become a powerful approach for characterizing the topology of collagen fibers and studying the role of collagen fibers in disease progression. We present a deep learning-based pipeline to quantify collagen fibers' topological properties in microscopy-based collagen images from pathological tissue samples. Our method leverages deep neural networks to extract collagen fiber centerlines and deep generative models to create synthetic training data, addressing the current shortage of large-scale annotations. As a part of this effort, we have created and annotated a collagen fiber centerline dataset, with the hope of facilitating further research in this field. Quantitative measurements such as fiber orientation, alignment, density, and length can be derived based on the centerline extraction results. Our pipeline comprises three stages. Initially, a variational autoencoder is trained to generate synthetic centerlines possessing controllable topological properties. Subsequently, a conditional generative adversarial network synthesizes realistic collagen fiber images from the synthetic centerlines, yielding a synthetic training set of image-centerline pairs. Finally, we train a collagen fiber centerline extraction network using both the original and synthetic data. Evaluation using collagen fiber images from pancreas, liver, and breast cancer samples collected via second-harmonic generation microscopy demonstrates our pipeline's superiority over several popular fiber centerline extraction tools. Incorporating synthetic data into training further enhances the network's generalizability. Our code is available at https://github.com/uw-loci/collagen-fiber-metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Sunflower完成签到,获得积分10
1秒前
mochen完成签到,获得积分10
1秒前
时尚的初柔完成签到,获得积分10
1秒前
DJ完成签到,获得积分10
2秒前
Remember完成签到 ,获得积分10
2秒前
飞想思完成签到,获得积分10
2秒前
华仔应助冯昊采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
西伯利亚兔完成签到,获得积分10
4秒前
趴趴熊完成签到,获得积分10
4秒前
4秒前
科研通AI2S应助标致小天鹅采纳,获得10
4秒前
三七小洋完成签到,获得积分10
5秒前
吃肉璇璇发布了新的文献求助10
6秒前
xinran_lv完成签到,获得积分10
6秒前
烂漫饼干应助渡尘采纳,获得10
6秒前
小李完成签到,获得积分20
7秒前
dahuihui发布了新的文献求助10
7秒前
chen发布了新的文献求助30
7秒前
小雨发布了新的文献求助10
7秒前
小羊佳佳完成签到,获得积分10
8秒前
多么完美的一天完成签到,获得积分10
8秒前
YH完成签到,获得积分10
8秒前
Kuga应助xuxu采纳,获得20
8秒前
仰山雪完成签到 ,获得积分10
8秒前
花花发布了新的文献求助10
9秒前
Lucky小M完成签到,获得积分10
9秒前
阮人雄完成签到,获得积分10
9秒前
Orange应助library2025采纳,获得10
10秒前
10秒前
马良完成签到,获得积分10
10秒前
文艺的白开水完成签到,获得积分10
10秒前
11秒前
11秒前
yimi发布了新的文献求助10
11秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
ВЕРНЫЙ ДРУГ КИТАЙСКОГО НАРОДА СЕРГЕЙ ПОЛЕВОЙ 500
ВОЗОБНОВЛЕН ВЫПУСК ЖУРНАЛА "КИТАЙ" НА РУССКОМ ЯЗЫКЕ 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3907198
求助须知:如何正确求助?哪些是违规求助? 3452766
关于积分的说明 10872314
捐赠科研通 3178576
什么是DOI,文献DOI怎么找? 1755937
邀请新用户注册赠送积分活动 849253
科研通“疑难数据库(出版商)”最低求助积分说明 791387