Leveraging digital technologies for circular economy in construction industry: a way forward

大数据 循环经济 新兴技术 工业4.0 领域(数学) 独创性 知识管理 计算机科学 数据科学 现状 工程管理 工程类 人工智能 创造力 数据挖掘 生态学 数学 纯数学 政治学 法学 生物 市场经济 经济
作者
Navodana Rodrigo,Hossein Omrany,Ruidong Chang,Jian Zuo
出处
期刊:Smart and sustainable built environment [Emerald (MCB UP)]
卷期号:13 (1): 85-116 被引量:74
标识
DOI:10.1108/sasbe-05-2023-0111
摘要

Purpose This study aims to investigate the literature related to the use of digital technologies for promoting circular economy (CE) in the construction industry. Design/methodology/approach A comprehensive approach was adopted, involving bibliometric analysis, text-mining analysis and content analysis to meet three objectives (1) to unveil the evolutionary progress of the field, (2) to identify the key research themes in the field and (3) to identify challenges hindering the implementation of digital technologies for CE. Findings A total of 365 publications was analysed. The results revealed eight key digital technologies categorised into two main clusters including “digitalisation and advanced technologies” and “sustainable construction technologies”. The former involved technologies, namely machine learning, artificial intelligence, deep learning, big data analytics and object detection and computer vision that were used for (1) forecasting construction and demolition (C&D) waste generation, (2) waste identification and classification and (3) computer vision for waste management. The latter included technologies such as Internet of Things (IoT), blockchain and building information modelling (BIM) that help optimise resource use, enhance transparency and sustainability practices in the industry. Overall, these technologies show great potential for improving waste management and enabling CE in construction. Originality/value This research employs a holistic approach to provide a status-quo understanding of the digital technologies that can be utilised to support the implementation of CE in construction. Further, this study underlines the key challenges associated with adopting digital technologies, whilst also offering opportunities for future improvement of the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xinxin完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
完美世界应助安静的龙猫采纳,获得10
2秒前
2秒前
1234567890完成签到 ,获得积分10
2秒前
3秒前
3秒前
苗条的映秋完成签到,获得积分10
3秒前
3秒前
小小阿杰完成签到,获得积分10
4秒前
5秒前
5秒前
磨耳谬思完成签到,获得积分10
5秒前
一轮太阳和幻想完成签到,获得积分10
5秒前
5秒前
zs完成签到,获得积分10
5秒前
6秒前
chenziyuan发布了新的文献求助10
6秒前
XQQDD发布了新的文献求助10
6秒前
Lijia_YAO发布了新的文献求助10
6秒前
Sebastian发布了新的文献求助10
6秒前
稳重醉香完成签到,获得积分10
7秒前
Peipei发布了新的文献求助10
7秒前
英姑应助惊鸿采纳,获得10
7秒前
7秒前
小鲨鱼完成签到,获得积分10
8秒前
Jasper应助聪明帅哥采纳,获得10
8秒前
8秒前
9秒前
mit发布了新的文献求助10
10秒前
SciGPT应助WROBTY采纳,获得10
10秒前
10秒前
Super枫发布了新的文献求助10
10秒前
烟花应助郁金香采纳,获得10
10秒前
吉尼太美发布了新的文献求助10
10秒前
HZH发布了新的文献求助10
11秒前
12秒前
嘚嘚嘚完成签到,获得积分20
12秒前
稳重醉香发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472388
求助须知:如何正确求助?哪些是违规求助? 4574698
关于积分的说明 14347960
捐赠科研通 4502083
什么是DOI,文献DOI怎么找? 2466883
邀请新用户注册赠送积分活动 1454893
关于科研通互助平台的介绍 1429206