Optimized Adaptive Finite-Time Consensus Control for Stochastic Nonlinear Multiagent Systems With Non-Affine Nonlinear Faults

标识符 非线性系统 计算机科学 反推 仿射变换 多智能体系统 强化学习 控制理论(社会学) 趋同(经济学) 人工神经网络 自适应控制 人工智能 控制(管理) 数学 物理 量子力学 纯数学 经济 程序设计语言 经济增长
作者
Xin Wang,Weiwei Guang,Tingwen Huang,Jürgen Kurths
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 5012-5023 被引量:86
标识
DOI:10.1109/tase.2023.3306101
摘要

This article studies the optimized adaptive finite-time consensus control issue for stochastic nonlinear multiagent systems subject to non-affine nonlinear faults. Under the architecture of the adaptive optimized backstepping method, this article develops the neural-network-based simplified reinforcement learning algorithm with an identifier-critic-actor structure, where the identifier, critic and actor are put forward to estimate unknown dynamics, evaluate system performance and implement control behavior, respectively. Then, the Butterworth low-pass filter is introduced to compensate for the adverse effects brought by non-affine nonlinear faults. Furthermore, it is verified by Itô differential equation and the finite-time theory that the closed-loop system is semi-global finite-time stable in probability. Finally, the effectiveness of the control algorithm is illustrated by simulation examples. Note to Practitioners —This paper was motivated by the problem of finite-time convergence is one of significance performance index in many practical application. For systems with high transient performance standards, such as robotic systems, manipulator systems and unmanned aerial systems, finite time convergence is of practical importance. Accordingly, distinguished from the previous investigation results, this article develops the neural-network (NN)-based simplified reinforcement learning (RL) algorithm with an identifier-critic-actor structure, where the identifier, critic and actor are put forward to estimate unknown dynamics, evaluate system performance and implement control behavior, respectively. We believe that the novel research method will bring a research spring for the constrained systems. Preliminary simulation experiments suggest that this approach is feasible. In future research, we will address the fixed time control protocol designs for nonlinear multi-agent systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
划分完成签到,获得积分10
刚刚
111发布了新的文献求助10
1秒前
fanfan完成签到,获得积分10
2秒前
周久完成签到 ,获得积分10
2秒前
ada发布了新的文献求助10
3秒前
小蘑菇应助小卢卢快闭嘴采纳,获得10
4秒前
彭tiantian完成签到 ,获得积分10
4秒前
6秒前
lucy发布了新的文献求助10
6秒前
8秒前
爱放屁的马邦德完成签到,获得积分10
8秒前
simdows发布了新的文献求助10
9秒前
Rain完成签到,获得积分10
10秒前
11秒前
lzcccccc完成签到,获得积分10
12秒前
ljc完成签到 ,获得积分10
13秒前
14秒前
科研通AI6应助纸箱采纳,获得10
15秒前
15秒前
original完成签到,获得积分10
16秒前
一向年光无限身完成签到,获得积分10
16秒前
浮游应助大李不说话采纳,获得10
18秒前
19秒前
日出完成签到,获得积分10
20秒前
Twonej举报lilianan求助涉嫌违规
21秒前
21秒前
七星茶发布了新的文献求助10
22秒前
无花果应助Wells采纳,获得10
24秒前
上官若男应助Wells采纳,获得10
24秒前
乐乐应助Wells采纳,获得10
24秒前
赘婿应助Wells采纳,获得10
24秒前
情怀应助Wells采纳,获得10
24秒前
丘比特应助Wells采纳,获得10
24秒前
汉堡包应助从容面包采纳,获得10
26秒前
beauty3137发布了新的文献求助10
27秒前
完美世界应助爱笑的天空采纳,获得10
29秒前
29秒前
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741