亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

State of charge estimation and error analysis of lithium-ion batteries for electric vehicles using Kalman filter and deep neural network

荷电状态 扩展卡尔曼滤波器 电池(电) 卡尔曼滤波器 控制理论(社会学) 电压 锂离子电池 电动汽车 等效电路 近似误差 工程类 计算机科学 算法 电气工程 功率(物理) 人工智能 物理 控制(管理) 量子力学
作者
Rimsha,Sadia Murawwat,Muhammad Majid Gulzar,Ahmad Alzahrani,Ghulam Hafeez,Farrukh Aslam Khan,Azher M. Abed
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:72: 108039-108039 被引量:44
标识
DOI:10.1016/j.est.2023.108039
摘要

The lithium-ion battery has a great significance in meeting the growing demand for Electric Vehicles (EVs) due to its higher energy density, longer life cycle, and notable nominal voltage and capacity. One crucial parameter for lithium-ion batteries is the State of Charge (SOC), which represents the available capacity and ensures that the system operates in a secure and reliable mode for EVs. SOC plays a significant role in the Battery Management System (BMS). This research aims to propose an Equivalent Circuit Model (ECM) based on Kalman filtering method and a data-driven technique, Deep Feed-Forward Neural Network (DFNN), for accurate SOC estimation of Electric Vehicle Battery (EVB). Initially, lithium-ion battery parameters are identified using a second-order RC (2-RC) Equivalent Circuit Model (ECM). Subsequently, battery modeling is performed, and various operating conditions such as terminal voltage, load current, and temperature are measured to obtain initial values for the filtering method used in SOC estimation. These operating conditions are crucial for ensuring safe and efficient charging and discharging of lithium-ion batteries. Based on the identified ECM parameters, SOC estimation error and bound error are then minimized using Kalman Filter (KF), Extended Kalman Filter (EKF), and Unscented Kalman Filter (UKF) techniques. These filtering methods are employed to accurately estimate the SOC of the battery. The results demonstrate that the proposed model based on KF and EKF algorithms estimates SOC bound error within 2.5 % - –2 % and estimation error <1.5 % - –0.7 %. On the other hand, the UKF estimates a SOC bound error of 1.5 % and an estimation error of 0.5 %, proving the algorithm's efficiency and reliability. Particularly, this estimation error rejects measurement noise and parametric uncertainties for lithium-ion batteries to drive EVs with efficacy using UKF. Hence, the UKF algorithm estimated SOC has low estimation error, ensuring more accurate results. Finally, data-driven, DFNN method is implemented for accuracy enhancement of SOC estimation with trained 20 iterations and epochs data. Using this method, the SOC estimation accuracy is satisfactory with only 0.04 % Root Mean Squared Error (RMSE). The validation results indicate that the model-based filtering method is an effective method for SOC estimation to be applicable. In contrast, in a novel data-driven approach, SOC estimation accuracy is improved by approximately 0.46 %.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雷半双发布了新的文献求助10
刚刚
2秒前
小马甲应助忧心的寄松采纳,获得10
5秒前
阜睿完成签到 ,获得积分10
5秒前
丘比特应助雷半双采纳,获得10
5秒前
11秒前
17秒前
科研专家完成签到 ,获得积分10
18秒前
聪慧的从雪完成签到 ,获得积分10
32秒前
燕晓啸完成签到 ,获得积分0
34秒前
43秒前
逍遥呱呱完成签到 ,获得积分10
45秒前
Akim应助科研通管家采纳,获得10
46秒前
111111发布了新的文献求助10
47秒前
聪慧松思完成签到 ,获得积分10
52秒前
111111完成签到,获得积分10
56秒前
oni发布了新的文献求助10
56秒前
虚心的仙人掌完成签到,获得积分10
59秒前
Ava应助iui飞采纳,获得10
1分钟前
Lucas应助知足的憨人*-*采纳,获得10
1分钟前
张尧摇摇摇完成签到 ,获得积分10
1分钟前
ylky完成签到 ,获得积分10
1分钟前
茜茜完成签到 ,获得积分10
1分钟前
Owen应助Drew采纳,获得30
1分钟前
wang完成签到 ,获得积分10
1分钟前
xixi完成签到 ,获得积分10
1分钟前
1分钟前
张振宇完成签到 ,获得积分10
1分钟前
1分钟前
梁梁完成签到 ,获得积分10
1分钟前
iui飞发布了新的文献求助10
1分钟前
agent完成签到 ,获得积分10
1分钟前
1分钟前
三叔发布了新的文献求助10
1分钟前
1分钟前
三叔完成签到,获得积分0
2分钟前
Drew发布了新的文献求助30
2分钟前
归尘完成签到,获得积分10
2分钟前
2分钟前
威武皮带完成签到,获得积分10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777580
求助须知:如何正确求助?哪些是违规求助? 3322957
关于积分的说明 10212647
捐赠科研通 3038289
什么是DOI,文献DOI怎么找? 1667276
邀请新用户注册赠送积分活动 798073
科研通“疑难数据库(出版商)”最低求助积分说明 758201