Monthly-scale hydro-climatic forecasting and climate change impact evaluation based on a novel DCNN-Transformer network

气候变化 地表径流 计算机科学 卷积神经网络 环境科学 深度学习 超参数 机器学习 人工智能 气候学 数据挖掘 气象学 地理 生态学 生物 地质学
作者
Haitao Yang,Zhizheng Zhang,Xi Liu,Pengxu Jing
出处
期刊:Environmental Research [Elsevier BV]
卷期号:236: 116821-116821 被引量:12
标识
DOI:10.1016/j.envres.2023.116821
摘要

Climate change has emerged as one of the foremost global challenges confronting humanity today, leading to a heightened frequency and intensity of extreme weather phenomena, including droughts, floods, and erratic rainfall patterns. Accurately predicting changes in runoff patterns under future climate conditions holds significant importance for effective regional water resource planning and management. Recent research on runoff forecast has centered on optimizing hyperparameters of ELM, RNN, LSTM models using PSO, GWO, SSA, and other algorithms. Additionally, key features are extracted through input variable decomposition and preprocessing methods like EMD, EEMD, and VMD. However, these approaches have difficulties in extracting the long-term dependencies information of sequence units, parallel computing, and hyperparameter sensitivity. To address these shortcomings, this study proposes a novel end-to-end deep runoff prediction model based on deep convolutional neural network and Transformer (DCTN). The deep convolutional modules of DCTN employs the deep convolutional operation to extract local features of climate data while the Transformer of DCTN makes full use of self-attention to capture the long-term dependencies, which can achieve more accurate runoff predictions. Experiments on historical runoff forecasting at the Shanjiaodi hydrology station in the Dagu River Basin show that the proposed DCTN obtains a notable improvement of approximately 30.9% compared to traditional models. Based on the prediction results of three shared socioeconomic pathways, the potential impacts of climate change on runoff in Dagu River Basin were evaluated using the DCTN model. The results reveal that the likelihood of spring floods is substantially amplified in the mid-century and late-century, while the probability of extreme summer runoff diminishes. This study advances the understanding of runoff prediction and its implications under changing climate scenarios, paving the way for more informed decision-making and effective water resource management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Helix_Elaina发布了新的文献求助10
1秒前
yin完成签到 ,获得积分10
3秒前
XYJ完成签到,获得积分10
4秒前
oky完成签到 ,获得积分10
4秒前
桐桐应助yingying采纳,获得30
4秒前
5秒前
桐桐应助文静的峻熙采纳,获得10
6秒前
7秒前
crillzlol完成签到,获得积分10
9秒前
dido发布了新的文献求助10
9秒前
10秒前
水悟子发布了新的文献求助10
10秒前
一颗红葡萄完成签到 ,获得积分10
10秒前
11秒前
Janx发布了新的文献求助10
11秒前
13秒前
研友_LJeoa8完成签到,获得积分10
15秒前
zkyyinf_zero完成签到,获得积分10
15秒前
15秒前
16秒前
Janx完成签到,获得积分10
17秒前
冬去春来完成签到 ,获得积分10
18秒前
xiao发布了新的文献求助10
18秒前
18秒前
spring完成签到 ,获得积分10
19秒前
狂吃五碗饭完成签到,获得积分10
21秒前
123.完成签到 ,获得积分10
22秒前
酷炫醉山发布了新的文献求助10
22秒前
yuan完成签到,获得积分10
23秒前
Always完成签到,获得积分10
23秒前
feizao完成签到,获得积分10
24秒前
脑洞疼应助冷静秀采纳,获得10
24秒前
xiao完成签到,获得积分10
24秒前
24秒前
体贴的代桃完成签到,获得积分10
26秒前
28秒前
失眠的涵易完成签到,获得积分10
28秒前
沏碗麻花发布了新的文献求助10
29秒前
ohenry发布了新的文献求助10
31秒前
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789447
求助须知:如何正确求助?哪些是违规求助? 3334390
关于积分的说明 10270027
捐赠科研通 3050866
什么是DOI,文献DOI怎么找? 1674216
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760732