Establishment and validation of a nomogram for suicidality in Chinese secondary school students

列线图 毒物控制 接收机工作特性 心理学 临床心理学 心理干预 医学 统计 精神科 数学 医疗急救 内科学
作者
Jie Yan,Yang Liu,Junjie Yu,Lipin Liao,Hong Wang
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:330: 148-157 被引量:8
标识
DOI:10.1016/j.jad.2023.02.062
摘要

Accurately identifying high-risk of suicide groups and conducting appropriate interventions are important to reduce the risk of suicide. In this study, a nomogram technique was used to develop a predictive model for the suicidality of secondary school students based on four aspects: individual characteristics; health risk behaviors; family factors; and school factors.A total of 9338 secondary school students were surveyed using the stratified cluster sampling method, and subjects were randomly divided into a training set (n = 6366) and a validation set (n = 2728). In the former, the results of the lasso regression and random forest were combined, from which 7 optimal predictors of suicidality were determined. These were used to construct a nomogram. This nomogram's discrimination, calibration, clinical applicability, and generalization were assessed using receiver operating characteristic curves (ROC), calibration curves, decision curve analysis (DCA), and internal validation.Gender, depression symptoms, self-injury, running away from home, parents' relationship, relationship with father, and academic stress were found to be significant predictors of suicidality. The area under the curve (AUC) of the training set was 0.806, while that of the validation data was 0.792. The calibration curve of the nomogram was close to the diagonal, and the DCA showed the nomogram was clinically beneficial across a range of thresholds of 9-89 %.Causal inference is limited due to the cross-sectional design.An effective tool was constructed for predicting suicidality among secondary school students, which should help school healthcare personnel assess this information about students and also identify high-risk groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助屹男采纳,获得10
刚刚
accepted完成签到,获得积分10
1秒前
Lucas应助王某某采纳,获得10
1秒前
2秒前
2秒前
yy发布了新的文献求助10
3秒前
3秒前
李爱国应助lwwwl采纳,获得10
3秒前
不知终日梦为鱼完成签到,获得积分10
4秒前
希望天下0贩的0应助Xx采纳,获得10
4秒前
luo发布了新的文献求助10
5秒前
6秒前
独孤幻月96应助cx采纳,获得10
6秒前
哈哈哈完成签到 ,获得积分10
6秒前
David完成签到,获得积分10
6秒前
lihuanmoon完成签到,获得积分10
6秒前
pluto应助吴伊玟采纳,获得10
7秒前
7秒前
Zetlynn发布了新的文献求助10
7秒前
情怀应助常乐的大宝剑采纳,获得10
8秒前
FJ完成签到,获得积分10
8秒前
bkagyin应助白榆在北采纳,获得10
9秒前
9秒前
大秦骑兵发布了新的文献求助10
10秒前
hongzhi完成签到,获得积分10
10秒前
10秒前
肥仔完成签到,获得积分10
12秒前
彭于晏应助可乐采纳,获得10
13秒前
圆圆发布了新的文献求助10
13秒前
xiaoxiao1992发布了新的文献求助20
13秒前
小王发布了新的文献求助10
14秒前
天天快乐应助李小麻采纳,获得10
14秒前
屹男发布了新的文献求助10
15秒前
Qing完成签到,获得积分10
15秒前
15秒前
666发布了新的文献求助10
15秒前
莽兽鳞上最黑的皮完成签到,获得积分10
15秒前
16秒前
饱满飞绿发布了新的文献求助10
16秒前
彩色垣完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4003541
求助须知:如何正确求助?哪些是违规求助? 3542967
关于积分的说明 11285869
捐赠科研通 3280028
什么是DOI,文献DOI怎么找? 1808826
邀请新用户注册赠送积分活动 885009
科研通“疑难数据库(出版商)”最低求助积分说明 810568