亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CMTSNN: A Deep Learning Model for Multiclassification of Abnormal and Encrypted Traffic of Internet of Things

计算机科学 加密 稳健性(进化) 交通分类 特征提取 数据挖掘 人工智能 网络数据包 物联网 人工神经网络 互联网 机器学习 计算机网络 计算机安全 生物化学 化学 万维网 基因
作者
Shizhou Zhu,Xiaolong Xu,Honghao Gao,Fu Xiao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (13): 11773-11791 被引量:15
标识
DOI:10.1109/jiot.2023.3244544
摘要

With the increasing types and number of Internet of Things (IoT) devices and malicious programs and the popularization of encryption technology in the communication process between the Internet and the IoT, a large amount of encrypted abnormal traffic among devices endangers IoT cybersecurity. How to identify abnormal encrypted traffic of the IoT has become the premise of cybersecurity. Presently, most of the detection methods for traffic in the IoT have problems, such as simple data set processing, imperfect feature extraction, data imbalance, and low multiclassification accuracy. In this article, we propose a multiclassification deep learning model named the cost matrix time–space neural network (CMTSNN) for abnormal and encrypted IoT traffic. The CMTSNN is divided into three parts. The first part is the preprocessing stage of the data set, which needs to retain the timing relation between two data packets in the stream and create a cost penalty matrix according to the sample distribution. Aimed at the robustness of feature extraction in network flow, the second part extracts time series features and then space features to ensure the robustness of feature extraction. The third part is aimed at the problem of data imbalance. The cost penalty matrix is applied to the cost penalty layer in the training process, and then the improved cross-entropy loss function is used to calculate the loss to improve the classification accuracy of minority categories and increase the overall multiclassification performance of the model. Experiments were carried out with the ToN-IoT, BoT-IoT, and ISCX VPN-NonVPN data sets. Compared with current methods, the proposed method shows better performances, including accuracy, precision, recall, F1 Score, and false alarm rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
bkagyin应助zzh采纳,获得10
17秒前
LUZ七月发布了新的文献求助10
22秒前
22秒前
康康发布了新的文献求助20
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
45秒前
Lucas应助悟空采纳,获得10
50秒前
zzh发布了新的文献求助10
52秒前
make217完成签到 ,获得积分10
58秒前
andrele发布了新的文献求助10
1分钟前
1分钟前
简称王完成签到 ,获得积分10
1分钟前
1分钟前
852应助LUZ七月采纳,获得10
1分钟前
LUZ七月完成签到,获得积分10
1分钟前
无情的羊青完成签到,获得积分10
1分钟前
华仔应助andrele采纳,获得10
1分钟前
怡然念之完成签到 ,获得积分10
2分钟前
agent完成签到 ,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
依古比古完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
andrele发布了新的文献求助10
3分钟前
budingman发布了新的文献求助10
3分钟前
无限的灵安完成签到,获得积分20
3分钟前
xpqiu完成签到,获得积分10
3分钟前
杨无敌完成签到 ,获得积分10
3分钟前
dax大雄完成签到 ,获得积分10
3分钟前
3分钟前
满意花卷完成签到 ,获得积分10
3分钟前
月儿完成签到 ,获得积分10
3分钟前
慕青应助欣欣采纳,获得10
4分钟前
科研通AI5应助俏皮的曼安采纳,获得10
4分钟前
4分钟前
hua完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788218
求助须知:如何正确求助?哪些是违规求助? 3333659
关于积分的说明 10262932
捐赠科研通 3049526
什么是DOI,文献DOI怎么找? 1673586
邀请新用户注册赠送积分活动 802070
科研通“疑难数据库(出版商)”最低求助积分说明 760504