Deep Learning Attention Mechanism in Medical Image Analysis: Basics and Beyonds

深度学习 人工智能 计算机科学 机制(生物学) 医学影像学 医学 医学 医学教育 哲学 认识论
作者
Xiang Li,Minglei Li,Pengfei Yan,Guanyi Li,Yuchen Jiang,Hao Luo,Shen Yin
标识
DOI:10.53941/ijndi0201006
摘要

Survey/review study Deep Learning Attention Mechanism in Medical Image Analysis: Basics and Beyonds Xiang Li 1, Minglei Li 1, Pengfei Yan 1, Guanyi Li 1, Yuchen Jiang 1, Hao Luo 1,*, and Shen Yin 2 1 Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 2 Department of Mechanical and Industrial Engineering, Faculty of Engineering, Norwegian University of Science and Technology, Trondheim 7034, Norway * Correspondence: hao.luo@hit.edu.cn Received: 16 October 2022 Accepted: 25 November 2022 Published: 27 March 2023 Abstract: With the improvement of hardware computing power and the development of deep learning algorithms, a revolution of "artificial intelligence (AI) + medical image" is taking place. Benefiting from diversified modern medical measurement equipment, a large number of medical images will be produced in the clinical process. These images improve the diagnostic accuracy of doctors, but also increase the labor burden of doctors. Deep learning technology is expected to realize an auxiliary diagnosis and improve diagnostic efficiency. At present, the method of deep learning technology combined with attention mechanism is a research hotspot and has achieved state-of-the-art results in many medical image tasks. This paper reviews the deep learning attention methods in medical image analysis. A comprehensive literature survey is first conducted to analyze the keywords and literature. Then, we introduce the development and technical characteristics of the attention mechanism. For its application in medical image analysis, we summarize the related methods in medical image classification, segmentation, detection, and enhancement. The remaining challenges, potential solutions, and future research directions are also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平淡紫夏发布了新的文献求助10
刚刚
无限柠檬4519完成签到,获得积分10
4秒前
超级蘑菇完成签到 ,获得积分10
5秒前
5秒前
CodeCraft应助勤奋的世德采纳,获得10
6秒前
华仔应助学业顺利采纳,获得10
6秒前
青山无思发布了新的文献求助10
8秒前
bestzhangyin1完成签到,获得积分10
9秒前
11秒前
12秒前
13秒前
震动的香旋完成签到,获得积分20
14秒前
15秒前
15秒前
JianYugen完成签到,获得积分0
15秒前
111发布了新的文献求助10
16秒前
zrs发布了新的文献求助10
17秒前
燕儿完成签到,获得积分10
17秒前
沉静皮带完成签到 ,获得积分10
19秒前
kdjm688完成签到,获得积分10
21秒前
王晓敏发布了新的文献求助10
21秒前
梦梦完成签到,获得积分10
21秒前
rh完成签到,获得积分10
21秒前
归尘发布了新的文献求助30
21秒前
汉堡包应助科研通管家采纳,获得10
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
冰魂应助科研通管家采纳,获得10
22秒前
在水一方应助科研通管家采纳,获得10
22秒前
英姑应助科研通管家采纳,获得20
22秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
充电宝应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得30
23秒前
爆米花应助科研通管家采纳,获得20
23秒前
共享精神应助科研通管家采纳,获得10
23秒前
爆米花应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
上官若男应助科研通管家采纳,获得10
23秒前
23秒前
Lucas应助科研通管家采纳,获得10
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777877
求助须知:如何正确求助?哪些是违规求助? 3323387
关于积分的说明 10214219
捐赠科研通 3038610
什么是DOI,文献DOI怎么找? 1667553
邀请新用户注册赠送积分活动 798195
科研通“疑难数据库(出版商)”最低求助积分说明 758304