Deep Learning Attention Mechanism in Medical Image Analysis: Basics and Beyonds

深度学习 人工智能 计算机科学 机制(生物学) 医学影像学 医学 医学 医学教育 认识论 哲学
作者
Xiang Li,Minglei Li,Pengfei Yan,Guanyi Li,Yuchen Jiang,Hao Luo,Shen Yin
标识
DOI:10.53941/ijndi0201006
摘要

Survey/review study Deep Learning Attention Mechanism in Medical Image Analysis: Basics and Beyonds Xiang Li 1, Minglei Li 1, Pengfei Yan 1, Guanyi Li 1, Yuchen Jiang 1, Hao Luo 1,*, and Shen Yin 2 1 Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 2 Department of Mechanical and Industrial Engineering, Faculty of Engineering, Norwegian University of Science and Technology, Trondheim 7034, Norway * Correspondence: hao.luo@hit.edu.cn Received: 16 October 2022 Accepted: 25 November 2022 Published: 27 March 2023 Abstract: With the improvement of hardware computing power and the development of deep learning algorithms, a revolution of "artificial intelligence (AI) + medical image" is taking place. Benefiting from diversified modern medical measurement equipment, a large number of medical images will be produced in the clinical process. These images improve the diagnostic accuracy of doctors, but also increase the labor burden of doctors. Deep learning technology is expected to realize an auxiliary diagnosis and improve diagnostic efficiency. At present, the method of deep learning technology combined with attention mechanism is a research hotspot and has achieved state-of-the-art results in many medical image tasks. This paper reviews the deep learning attention methods in medical image analysis. A comprehensive literature survey is first conducted to analyze the keywords and literature. Then, we introduce the development and technical characteristics of the attention mechanism. For its application in medical image analysis, we summarize the related methods in medical image classification, segmentation, detection, and enhancement. The remaining challenges, potential solutions, and future research directions are also discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eifuly发布了新的文献求助10
刚刚
海贼学术完成签到 ,获得积分10
2秒前
3秒前
酷波er应助尘埃之影采纳,获得10
7秒前
17秒前
19秒前
尘埃之影发布了新的文献求助10
22秒前
SciGPT应助MonsterChen采纳,获得10
23秒前
克泷发布了新的文献求助10
23秒前
29秒前
Lucas应助crack采纳,获得10
30秒前
30秒前
30秒前
30秒前
31秒前
科目三应助Eifuly采纳,获得10
32秒前
stella发布了新的文献求助10
32秒前
稻槐应助科研通管家采纳,获得10
32秒前
32秒前
充电宝应助科研通管家采纳,获得10
32秒前
斯文败类应助Cheryy采纳,获得10
32秒前
34秒前
cc发布了新的文献求助10
36秒前
36秒前
39秒前
衣吾余完成签到,获得积分10
42秒前
Jasper应助愤怒的西红柿采纳,获得10
43秒前
无感发布了新的文献求助10
43秒前
15khk发布了新的文献求助10
43秒前
45秒前
喜风完成签到,获得积分10
46秒前
Cheryy发布了新的文献求助10
49秒前
53秒前
54秒前
15khk完成签到 ,获得积分10
57秒前
谦让的青亦完成签到,获得积分10
57秒前
57秒前
Leon_Kim发布了新的文献求助10
59秒前
XCY发布了新的文献求助10
1分钟前
干净的人达完成签到 ,获得积分0
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Separating Singapore from British India 300
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5859857
求助须知:如何正确求助?哪些是违规求助? 6350485
关于积分的说明 15641198
捐赠科研通 4973654
什么是DOI,文献DOI怎么找? 2682784
邀请新用户注册赠送积分活动 1626430
关于科研通互助平台的介绍 1583667