清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Spatial-Temporal Position-Aware Graph Convolution Networks for Traffic Flow Forecasting

计算机科学 图形 职位(财务) 流量网络 人工智能 理论计算机科学 数学 组合数学 财务 经济
作者
Yiji Zhao,Youfang Lin,Haomin Wen,Tonglong Wei,Xiyuan Jin,Huaiyu Wan
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (8): 8650-8666 被引量:27
标识
DOI:10.1109/tits.2022.3220089
摘要

Recent works demonstrate that capturing correlations between road network nodes is crucial to improving traffic flow forecasting accuracy. In general, there are spatial, temporal, and joint spatial-temporal correlations between two nodes, whose strength is related to spatial and temporal position factors. For example, traffic congestion that occurs at a traffic hub has a wider and stronger impact than that at a branch road. Moreover, the above impacts can vary with temporal position. Although spatial-temporal graph convolution networks have become a popular paradigm for modeling those correlations, there are still three problems with existing models: (i) failing to effectively model joint spatial-temporal correlations; (ii) ignoring spatial and temporal position factors when modeling the aforementioned correlations; and (iii) failing to capture distinct spatial-temporal patterns of each node. To cope with the above issues, this paper proposes a novel S patial- T emporal P osition-aware G raph C onvolution N etwork (STPGCN) for traffic flow forecasting. Specifically, a trainable embedding module is constructed to represent the spatial and temporal positions of the nodes. Subsequently, a spatial-temporal position-aware relation inference module is proposed to adaptively infer the correlation weights of the three important spatial-temporal relations. Based on this, the generated spatial-temporal relations are integrated into a graph convolution layer for aggregating and updating node features. Finally, we design a spatial-temporal position-aware gated activation unit in the graph convolution, to capture the node-specific pattern features under the guidance of position embedding. Extensive experiments on six real-world datasets demonstrate the superiority of our model in terms of prediction performance and computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
涛1完成签到 ,获得积分10
4秒前
cdercder应助科研通管家采纳,获得20
6秒前
cdercder应助科研通管家采纳,获得20
6秒前
跳跃的鹏飞完成签到 ,获得积分10
9秒前
段誉完成签到 ,获得积分10
15秒前
勤劳的颤完成签到 ,获得积分10
21秒前
Hindiii完成签到,获得积分10
30秒前
愉快的老三完成签到,获得积分10
43秒前
科研通AI2S应助蔡从安采纳,获得10
46秒前
神说应助蔡从安采纳,获得10
46秒前
soong完成签到 ,获得积分10
48秒前
weijie完成签到,获得积分10
49秒前
蔡从安完成签到,获得积分20
56秒前
资白玉完成签到 ,获得积分10
56秒前
song完成签到 ,获得积分10
57秒前
1分钟前
maomao1986完成签到,获得积分10
1分钟前
海阔天空完成签到 ,获得积分10
1分钟前
提莫silence完成签到 ,获得积分10
1分钟前
俊逸的白梦完成签到 ,获得积分0
1分钟前
Ray完成签到 ,获得积分10
1分钟前
hwezhu完成签到,获得积分10
1分钟前
庄海棠完成签到 ,获得积分10
1分钟前
greentea完成签到,获得积分10
1分钟前
reeeveb完成签到 ,获得积分10
1分钟前
轩辕德地完成签到,获得积分10
2分钟前
2分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
糟糕的翅膀完成签到,获得积分10
2分钟前
昏睡的乌冬面完成签到 ,获得积分10
2分钟前
田様应助bull9518采纳,获得10
2分钟前
Qiancheni完成签到,获得积分10
2分钟前
SciGPT应助汎影采纳,获得10
2分钟前
2分钟前
小马甲应助汎影采纳,获得10
2分钟前
hmx发布了新的文献求助10
2分钟前
maxyer完成签到,获得积分10
2分钟前
深情安青应助汎影采纳,获得10
2分钟前
李健的小迷弟应助汎影采纳,获得10
3分钟前
汎影完成签到,获得积分10
3分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798521
求助须知:如何正确求助?哪些是违规求助? 3344082
关于积分的说明 10318422
捐赠科研通 3060615
什么是DOI,文献DOI怎么找? 1679712
邀请新用户注册赠送积分活动 806761
科研通“疑难数据库(出版商)”最低求助积分说明 763353