亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Short-term solar irradiance prediction based on spatiotemporal graph convolutional recurrent neural network

太阳辐照度 计算机科学 自回归模型 辐照度 自回归积分移动平均 人工神经网络 空间分析 卷积神经网络 时间序列 时间分辨率 期限(时间) 人工智能 数据挖掘 遥感 气象学 机器学习 数学 统计 地理 物理 量子力学
作者
Yunjun Yu,Guoping Hu
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:14 (5) 被引量:15
标识
DOI:10.1063/5.0105020
摘要

Solar irradiance data include temporal information and geospatial information, so solar irradiance prediction can be regarded as a spatiotemporal sequence prediction problem. However, at present, most of the research is based on time series prediction models, and the research studies on spatial-temporal series prediction models are relatively few. Therefore, it is necessary to integrate spatial-temporal information to construct a spatial-temporal sequence prediction model for research. In this paper, the spatial-temporal prediction model based on graph convolutional network (GCN) and long short-term memory network (LSTM) was established for short-term solar irradiance prediction. In this model, solar radiation observatories were modeled as undirected graphs, where each node corresponds to an observatory, and a GCN was used to capture spatial correlations between sites. For each node, temporal features were extracted by using a LSTM. In order to evaluate the prediction performance of this model, six solar radiation observatories located in the Xinjiang region of China were selected; together with widely used persistence model seasonal autoregressive integrated moving average and data-driven prediction models such as convolutional neural network, recurrent neural network, and LSTM, comparisons were made under different seasons and weather conditions. The experimental results show that the average root mean square error of the GCN-LSTM model at the six sites is 62.058 W/m2, which is reduced by 9.8%, 14.3%, 6.9%, and 3.3%, respectively, compared with other models; the average MAE is 25.376 W/m2, which is reduced by 27.7%, 26.5%, 20.1%, and 11%, respectively, compared with other models; the average R2 is 0.943, which is improved by 1.4%, 2.2%, 0.8%, and 0.4%, respectively, compared with other models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
P_Chem完成签到,获得积分10
8秒前
15秒前
lin发布了新的文献求助10
21秒前
lin完成签到,获得积分10
42秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
岸在海的深处完成签到 ,获得积分10
2分钟前
yangquanquan完成签到,获得积分10
2分钟前
Everything完成签到,获得积分10
3分钟前
KINGAZX完成签到 ,获得积分10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
简时完成签到 ,获得积分10
3分钟前
科研通AI5应助woods采纳,获得10
3分钟前
4分钟前
woods发布了新的文献求助10
4分钟前
webmaster完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
无花果应助yangL采纳,获得10
5分钟前
Lucas应助waresi采纳,获得30
6分钟前
6分钟前
waresi发布了新的文献求助30
6分钟前
6分钟前
6分钟前
大个应助忧心的白羊采纳,获得10
6分钟前
7分钟前
rrrrrrry发布了新的文献求助10
7分钟前
嗯嗯完成签到 ,获得积分10
7分钟前
yangL完成签到,获得积分10
7分钟前
7分钟前
7分钟前
kinmke发布了新的文献求助10
8分钟前
yangL发布了新的文献求助10
8分钟前
kinmke完成签到,获得积分10
8分钟前
上官若男应助张佳明采纳,获得10
8分钟前
wei jie完成签到 ,获得积分10
8分钟前
8分钟前
张佳明发布了新的文献求助10
8分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847718
求助须知:如何正确求助?哪些是违规求助? 3390423
关于积分的说明 10561548
捐赠科研通 3110793
什么是DOI,文献DOI怎么找? 1714535
邀请新用户注册赠送积分活动 825272
科研通“疑难数据库(出版商)”最低求助积分说明 775453