Automatic 3-Dimensional Cephalometric Landmarking via Deep Learning

人工智能 再现性 稳健性(进化) 计算机科学 威尔科克森符号秩检验 概化理论 试验装置 数据集 模式识别(心理学) 置信区间 头影测量 正颌外科 口腔正畸科 核医学 医学 数学 统计 基因 曼惠特尼U检验 化学 生物化学
作者
Gauthier Dot,Thomas Schouman,Shang‐Hung Chang,Frédéric Rafflenbeul,Adeline Kerbrat,Philippe Rouch,Laurent Gajny
出处
期刊:Journal of Dental Research [SAGE Publishing]
卷期号:101 (11): 1380-1387 被引量:37
标识
DOI:10.1177/00220345221112333
摘要

The increasing use of 3-dimensional (3D) imaging by orthodontists and maxillofacial surgeons to assess complex dentofacial deformities and plan orthognathic surgeries implies a critical need for 3D cephalometric analysis. Although promising methods were suggested to localize 3D landmarks automatically, concerns about robustness and generalizability restrain their clinical use. Consequently, highly trained operators remain needed to perform manual landmarking. In this retrospective diagnostic study, we aimed to train and evaluate a deep learning (DL) pipeline based on SpatialConfiguration-Net for automatic localization of 3D cephalometric landmarks on computed tomography (CT) scans. A retrospective sample of consecutive presurgical CT scans was randomly distributed between a training/validation set (n = 160) and a test set (n = 38). The reference data consisted of 33 landmarks, manually localized once by 1 operator(n = 178) or twice by 3 operators (n = 20, test set only). After inference on the test set, 1 CT scan showed "very low" confidence level predictions; we excluded it from the overall analysis but still assessed and discussed the corresponding results. The model performance was evaluated by comparing the predictions with the reference data; the outcome set included localization accuracy, cephalometric measurements, and comparison to manual landmarking reproducibility. On the hold-out test set, the mean localization error was 1.0 ± 1.3 mm, while success detection rates for 2.0, 2.5, and 3.0 mm were 90.4%, 93.6%, and 95.4%, respectively. Mean errors were -0.3 ± 1.3° and -0.1 ± 0.7 mm for angular and linear measurements, respectively. When compared to manual reproducibility, the measurements were within the Bland-Altman 95% limits of agreement for 91.9% and 71.8% of skeletal and dentoalveolar variables, respectively. To conclude, while our DL method still requires improvement, it provided highly accurate 3D landmark localization on a challenging test set, with a reliability for skeletal evaluation on par with what clinicians obtain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狗妹那塞完成签到,获得积分10
1秒前
安静发箍发布了新的文献求助10
2秒前
2秒前
科目三应助xiaoze采纳,获得10
3秒前
wyl完成签到,获得积分10
3秒前
Orange应助君君采纳,获得30
5秒前
Orange应助君君采纳,获得10
6秒前
Billy应助君君采纳,获得30
6秒前
打打应助君君采纳,获得10
6秒前
Hello应助君君采纳,获得30
6秒前
上官若男应助君君采纳,获得10
6秒前
BINGBING完成签到,获得积分10
6秒前
6秒前
6秒前
shelemi发布了新的文献求助10
6秒前
7秒前
7秒前
无花果应助Xiang采纳,获得10
7秒前
李健应助Xiang采纳,获得10
8秒前
Lucas应助Xiang采纳,获得10
8秒前
allia完成签到 ,获得积分10
9秒前
11秒前
亦74发布了新的文献求助10
11秒前
xchqb发布了新的文献求助10
11秒前
天天好心覃完成签到 ,获得积分10
12秒前
maoxiaogou完成签到,获得积分10
12秒前
wei发布了新的文献求助10
14秒前
Xiang完成签到,获得积分10
14秒前
端庄的孤风完成签到 ,获得积分10
15秒前
15秒前
16秒前
CCCCCL完成签到,获得积分10
16秒前
17秒前
方强完成签到 ,获得积分10
18秒前
大可完成签到 ,获得积分10
18秒前
LLL完成签到,获得积分10
18秒前
孙煜完成签到,获得积分10
18秒前
魁梧的盼望完成签到 ,获得积分10
19秒前
20秒前
充电宝应助阿虎采纳,获得10
20秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Youths Who Reason Exceptionally Well Mathematically and/or Verbally: Using the MVT:D4 Model to Develop Their Talents 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831561
求助须知:如何正确求助?哪些是违规求助? 3373738
关于积分的说明 10481304
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702949
邀请新用户注册赠送积分活动 819237
科研通“疑难数据库(出版商)”最低求助积分说明 771307