Automatic 3-Dimensional Cephalometric Landmarking via Deep Learning

人工智能 再现性 稳健性(进化) 计算机科学 威尔科克森符号秩检验 概化理论 试验装置 数据集 模式识别(心理学) 置信区间 头影测量 正颌外科 口腔正畸科 核医学 医学 数学 统计 基因 曼惠特尼U检验 化学 生物化学
作者
Gauthier Dot,Thomas Schouman,Shang‐Hung Chang,Frédéric Rafflenbeul,Adeline Kerbrat,Philippe Rouch,Laurent Gajny
出处
期刊:Journal of Dental Research [SAGE Publishing]
卷期号:101 (11): 1380-1387 被引量:41
标识
DOI:10.1177/00220345221112333
摘要

The increasing use of 3-dimensional (3D) imaging by orthodontists and maxillofacial surgeons to assess complex dentofacial deformities and plan orthognathic surgeries implies a critical need for 3D cephalometric analysis. Although promising methods were suggested to localize 3D landmarks automatically, concerns about robustness and generalizability restrain their clinical use. Consequently, highly trained operators remain needed to perform manual landmarking. In this retrospective diagnostic study, we aimed to train and evaluate a deep learning (DL) pipeline based on SpatialConfiguration-Net for automatic localization of 3D cephalometric landmarks on computed tomography (CT) scans. A retrospective sample of consecutive presurgical CT scans was randomly distributed between a training/validation set (n = 160) and a test set (n = 38). The reference data consisted of 33 landmarks, manually localized once by 1 operator(n = 178) or twice by 3 operators (n = 20, test set only). After inference on the test set, 1 CT scan showed "very low" confidence level predictions; we excluded it from the overall analysis but still assessed and discussed the corresponding results. The model performance was evaluated by comparing the predictions with the reference data; the outcome set included localization accuracy, cephalometric measurements, and comparison to manual landmarking reproducibility. On the hold-out test set, the mean localization error was 1.0 ± 1.3 mm, while success detection rates for 2.0, 2.5, and 3.0 mm were 90.4%, 93.6%, and 95.4%, respectively. Mean errors were -0.3 ± 1.3° and -0.1 ± 0.7 mm for angular and linear measurements, respectively. When compared to manual reproducibility, the measurements were within the Bland-Altman 95% limits of agreement for 91.9% and 71.8% of skeletal and dentoalveolar variables, respectively. To conclude, while our DL method still requires improvement, it provided highly accurate 3D landmark localization on a challenging test set, with a reliability for skeletal evaluation on par with what clinicians obtain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alina发布了新的文献求助20
1秒前
情怀应助linww采纳,获得10
2秒前
清脆冬卉完成签到 ,获得积分10
3秒前
斯文败类应助王贺采纳,获得10
3秒前
3秒前
TEO应助我不爱池鱼采纳,获得30
4秒前
田様应助小为采纳,获得10
5秒前
6913发布了新的文献求助10
5秒前
5秒前
大模型应助欢喜盼秋采纳,获得10
6秒前
hhh发布了新的文献求助20
6秒前
爆米花应助zxb采纳,获得10
6秒前
赘婿应助生动的冷风采纳,获得10
8秒前
小马甲应助危机的乐双采纳,获得10
9秒前
风清扬发布了新的文献求助200
10秒前
敏敏猫发布了新的文献求助10
11秒前
11秒前
时间纬度完成签到,获得积分10
11秒前
12秒前
董董发布了新的文献求助10
12秒前
13秒前
汉堡包应助刘小胖采纳,获得10
13秒前
tent01完成签到,获得积分10
14秒前
巴斯光年完成签到,获得积分10
14秒前
月月完成签到,获得积分10
14秒前
薯条完成签到 ,获得积分10
15秒前
15秒前
16秒前
共享精神应助Parrot_PAI采纳,获得10
16秒前
酷波er应助忘川采纳,获得10
17秒前
TEO应助我唉科研采纳,获得30
17秒前
月月发布了新的文献求助10
18秒前
灯火阑珊发布了新的文献求助10
18秒前
18秒前
NexusExplorer应助吕小布采纳,获得30
19秒前
20秒前
一个千年猪妖完成签到,获得积分10
20秒前
21秒前
zjzjzjzjzj完成签到 ,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4636981
求助须知:如何正确求助?哪些是违规求助? 4031143
关于积分的说明 12472318
捐赠科研通 3717932
什么是DOI,文献DOI怎么找? 2052052
邀请新用户注册赠送积分活动 1083179
科研通“疑难数据库(出版商)”最低求助积分说明 965197