传输(电信)
区间(图论)
2019年冠状病毒病(COVID-19)
传递率(结构动力学)
统计
基本再生数
严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)
分布(数学)
计量经济学
数学
医学
计算机科学
环境卫生
人口
病理
电信
疾病
传染病(医学专业)
数学分析
物理
组合数学
隔振
量子力学
振动
作者
Sheikh Taslim Ali,Dongxuan Chen,Wey Wen Lim,Amy Yeung,Dillon C. Adam,Yiu Chung Lau,Eric H. Y. Lau,Jessica Y. Wong,Jingyi Xiao,Faith Ho,Huizhi Gao,Lin Wang,Xiao-Ke Xu,Zhanwei Du,Peng Wu,GM Leung,Benjamin J. Cowling
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
日期:2022-08-30
被引量:4
标识
DOI:10.1101/2022.08.29.22279351
摘要
Abstract The serial interval distribution is used to approximate the generation time distribution, an essential parameter to predict the effective reproductive number “ R t ”, a measure of transmissibility. However, serial interval distributions may change as an epidemic progresses rather than remaining constant. Here we show that serial intervals in Hong Kong varied over time, closely associated with the temporal variation in COVID-19 case profiles and public health and social measures that were implemented in response to surges in community transmission. Quantification of the variation over time in serial intervals led to improved estimation of R t , and provided additional insights into the impact of public health measures on transmission of infections. One-Sentence Summary Real-time estimates of serial interval distributions can improve assessment of COVID-19 transmission dynamics and control.
科研通智能强力驱动
Strongly Powered by AbleSci AI