Integrating sensor fusion with machine learning for comprehensive assessment of phenotypic traits and drought response in poplar species

特征(语言学) 干旱胁迫 随机森林 气候变化 传感器融合 机器学习 人工智能 计算机科学 生物 数据挖掘 遥感 生态学 农学 哲学 语言学 地质学
作者
Z. Zhou,Huichun Zhang,Liming Bian,Lei Zhou,Yufeng Ge
出处
期刊:Plant Biotechnology Journal [Wiley]
标识
DOI:10.1111/pbi.70039
摘要

Summary Increased drought frequency and severity in a warming climate threaten the health and stability of forest ecosystems, influencing the structure and functioning of forests while having far‐reaching implications for global carbon storage and climate regulation. To effectively address the challenges posed by drought, it is imperative to monitor and assess the degree of drought stress in trees in a timely and accurate manner. In this study, a gradient drought stress experiment was conducted with poplar as the research object, and multimodal data were collected for subsequent analysis. A machine learning‐based poplar drought monitoring model was constructed, thereby enabling the monitoring of drought severity and duration in poplar trees. Four data processing methods, namely data decomposition, data layer fusion, feature layer fusion and decision layer fusion, were employed to comprehensively evaluate poplar drought monitoring. Additionally, the potential of new phenotypic features obtained by different data processing methods for poplar drought monitoring was discussed. The results demonstrate that the optimal machine learning poplar drought monitoring model, constructed under feature layer fusion, exhibits the best performance, with average accuracy, average precision, average recall and average F1 score reaching 0.85, 0.86, 0.85 and 0.85, respectively. Conversely, the novel phenotypic features derived through data decomposition and data layer fusion methods as supplementary features did not further augment the model precision. This indicates that the feature layer fusion approach has clear advantages in drought monitoring. This research offers a robust theoretical foundation and practical guidance for future tree health monitoring and drought response assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助皮皮虾采纳,获得10
1秒前
tosuto house完成签到 ,获得积分10
2秒前
Aloha完成签到 ,获得积分10
3秒前
3秒前
INSAT关注了科研通微信公众号
3秒前
3秒前
4秒前
k123456应助把怪物藏起来采纳,获得10
4秒前
Dr.CTH完成签到,获得积分10
4秒前
怕黑白猫发布了新的文献求助10
5秒前
mochi发布了新的文献求助10
5秒前
5秒前
burningzmz发布了新的文献求助10
6秒前
小蘑菇应助小博士328采纳,获得10
6秒前
6秒前
6秒前
小平发布了新的文献求助10
7秒前
科研通AI5应助史梦瑶采纳,获得30
7秒前
LTdoctor完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
haning发布了新的文献求助10
9秒前
麻雀发布了新的文献求助10
9秒前
9秒前
apple发布了新的文献求助10
10秒前
小Q发布了新的文献求助10
10秒前
科研通AI5应助覃雅丽采纳,获得10
10秒前
一座山的风完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
JamesPei应助再夕予采纳,获得10
13秒前
驭剑士发布了新的文献求助10
13秒前
李爱国应助Lucifer采纳,获得10
14秒前
14秒前
wyc发布了新的文献求助10
15秒前
圣晟胜完成签到,获得积分10
15秒前
嵤麈发布了新的文献求助10
15秒前
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794120
求助须知:如何正确求助?哪些是违规求助? 3339098
关于积分的说明 10293786
捐赠科研通 3055628
什么是DOI,文献DOI怎么找? 1676738
邀请新用户注册赠送积分活动 804705
科研通“疑难数据库(出版商)”最低求助积分说明 762047