亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

NoiseHGNN: Synthesized Similarity Graph-Based Neural Network for Noised Heterogeneous Graph Representation Learning

图形 计算机科学 人工智能 理论计算机科学
作者
Xiong Zhang,Cheng Xie,Haoran Duan,Beibei Yu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:39 (20): 21725-21733
标识
DOI:10.1609/aaai.v39i20.35477
摘要

Real-world graph data environments intrinsically exist noise (e.g., link and structure errors) that inevitably disturb the effectiveness of graph representation and downstream learning tasks. For homogeneous graphs, the latest works use original node features to synthesize a similarity graph that can correct the structure of the noised graph. This idea is based on the homogeneity assumption, which states that similar nodes in the homogeneous graph tend to have direct links in the original graph. However, similar nodes in heterogeneous graphs usually do not have direct links, which can not be used to correct the original noise graph. This causes a significant challenge in noised heterogeneous graph learning. To this end, this paper proposes a novel synthesized similarity-based graph neural network compatible with noised heterogeneous graph learning. First, we calculate the original feature similarities of all nodes to synthesize a similarity-based high-order graph. Second, we propose a similarity-aware encoder to embed original and synthesized graphs with shared parameters. Then, instead of graph-to-graph supervising, we synchronously supervise the original and synthesized graph embeddings to predict the same labels. Meanwhile, a target-based graph extracted from the synthesized graph contrasts the structure of the metapath-based graph extracted from the original graph to learn the mutual information. Extensive experiments in numerous real-world datasets show the proposed method achieves state-of-the-art records in the noised heterogeneous graph learning tasks. In highlights, +5~6\% improvements are observed in several noised datasets compared with previous SOTA methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李志全完成签到 ,获得积分10
13秒前
迷茫的一代完成签到,获得积分10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
1分钟前
开心远山发布了新的文献求助10
1分钟前
科目三应助33采纳,获得10
1分钟前
Chouvikin完成签到,获得积分10
2分钟前
笨笨山芙完成签到 ,获得积分10
2分钟前
Ava应助开心远山采纳,获得10
3分钟前
4分钟前
4分钟前
33发布了新的文献求助10
4分钟前
song发布了新的文献求助10
4分钟前
song完成签到 ,获得积分20
4分钟前
LiuHD完成签到,获得积分10
5分钟前
可爱的函函应助zzx采纳,获得10
5分钟前
沙河口大长硬完成签到,获得积分10
5分钟前
5分钟前
追梦人完成签到 ,获得积分10
5分钟前
常有李完成签到,获得积分10
5分钟前
LiuHD发布了新的文献求助10
5分钟前
5分钟前
YifanWang应助科研通管家采纳,获得10
5分钟前
Ava应助科研通管家采纳,获得10
5分钟前
YifanWang应助科研通管家采纳,获得30
5分钟前
5分钟前
6分钟前
6分钟前
小跑发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助50
6分钟前
风清扬应助小跑采纳,获得10
6分钟前
Levieus应助小跑采纳,获得10
6分钟前
zzx发布了新的文献求助10
6分钟前
小新小新完成签到 ,获得积分10
7分钟前
开心远山关注了科研通微信公众号
7分钟前
开心远山完成签到,获得积分10
8分钟前
科研啄木鸟完成签到 ,获得积分10
8分钟前
9分钟前
开心远山发布了新的文献求助10
9分钟前
满意的伊完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Effects of different anesthesia methods on bleeding and prognosis in endoscopic sinus surgery: a meta-analysis and systematic review of randomized controlled trials 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4844827
求助须知:如何正确求助?哪些是违规求助? 4145009
关于积分的说明 12833891
捐赠科研通 3891725
什么是DOI,文献DOI怎么找? 2139270
邀请新用户注册赠送积分活动 1159277
关于科研通互助平台的介绍 1059760