Genomics and the early diagnosis of lung cancer

肺癌 基因组学 医学 计算生物学 癌症 内科学 肿瘤科 生物信息学 生物 基因组 遗传学 基因
作者
Francesco Pepe,Tancredi Didier Bazan Russo,Valerio Gristina,Andrea Gottardo,Giulia Busuito,Giuliana Iannì,Gianluca Russo,Claudia Scimone,Lucia Palumbo,Lorena Incorvaia,Giuseppe Badalamenti,Antonio Galvano,Viviana Bazan,Antonio Russo,Giancarlo Troncone,Umberto Malapelle
出处
期刊:Personalized Medicine [Future Medicine]
卷期号:22 (3): 161-170
标识
DOI:10.1080/17410541.2025.2494982
摘要

Lung cancer (LC) remains the leading cause of cancer-related mortality worldwide, with most cases diagnosed at advanced stages, resulting in poor survival rates. Early detection significantly improves outcomes, yet current screening methods, such as low-dose computed tomography (LDCT), are limited by high false-positive rates, radiation exposure, and restricted eligibility criteria. This review highlights the transformative potential of genomic and molecular technologies in advancing the early detection of LC. Key innovations include liquid biopsy tools, such as circulating tumor DNA (ctDNA) and cell-free DNA (cfDNA) analysis, which offer minimally invasive approaches to detect tumor-specific genetic and epigenetic alterations. Emerging biomarkers, including methylation signatures, cfDNA fragmentomics, and multi-omics profiles, demonstrate improved sensitivity and specificity in identifying early-stage tumors. Advanced platforms like next-generation sequencing (NGS) and machine-learning algorithms further enhance diagnostic accuracy. Integrated approaches that combine genomic data with LDCT imaging and artificial intelligence (AI) show promise in addressing current limitations by improving risk stratification and nodule characterization. The review also explores multi-cancer early detection assays and precision diagnostic strategies tailored for diverse at-risk populations. By leveraging these advancements, clinicians can achieve earlier diagnoses, reduce unnecessary procedures, and ultimately decrease LC mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoming完成签到 ,获得积分10
1秒前
浮槎发布了新的文献求助10
2秒前
花蝴蝶完成签到,获得积分10
3秒前
翟世荣完成签到,获得积分10
3秒前
3秒前
Owen应助cc采纳,获得10
3秒前
寂寞的孤容完成签到 ,获得积分10
4秒前
可靠寒云完成签到,获得积分10
4秒前
lin完成签到 ,获得积分10
4秒前
4秒前
尚欣雨完成签到 ,获得积分10
5秒前
5秒前
Jasper应助长安采纳,获得10
6秒前
6秒前
lulululu完成签到,获得积分10
6秒前
6秒前
怕黑犀牛应助XU采纳,获得10
8秒前
9秒前
lisa发布了新的文献求助10
9秒前
9秒前
9秒前
冷艳的班完成签到,获得积分10
9秒前
岳勇震发布了新的文献求助10
10秒前
爆米花应助认真的寒香采纳,获得10
10秒前
10秒前
略略略发布了新的文献求助10
11秒前
烟花应助LSY采纳,获得10
11秒前
务实的西牛完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
Tang完成签到 ,获得积分10
13秒前
Orange应助余羿叶采纳,获得20
13秒前
zcx970206完成签到,获得积分10
14秒前
冷艳的班发布了新的文献求助10
14秒前
董又又又又完成签到,获得积分10
14秒前
15秒前
15秒前
坦率灵槐发布了新的文献求助10
15秒前
5555发布了新的文献求助10
16秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572