已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A personalized model and optimization strategy for estimating blood glucose concentrations from sweat measurements

计算机科学 汗水 个性化医疗 内科学 医学 生物信息学 生物
作者
Xiaoyu Yin,Elisabetta Peri,Eduard Pelssers,Jaap M. J. den Toonder,Lisa Klous,H.A.M. Daanen,Massimo Mischi
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:265: 108743-108743 被引量:2
标识
DOI:10.1016/j.cmpb.2025.108743
摘要

Diabetes is one of the four leading causes of death worldwide, necessitating daily blood glucose monitoring. While sweat offers a promising non-invasive alternative for glucose monitoring, its application remains limited due to the low to moderate correlation between sweat and blood glucose concentrations, which has been obtained until now by assuming a linear relationship. This study proposes a novel model-based strategy to estimate blood glucose concentrations from sweat samples, setting the stage for non-invasive glucose monitoring through sweat-sensing technology. We first developed a pharmacokinetic glucose transport model that describes the glucose transport from blood to sweat. Secondly, we designed a novel optimization strategy leveraging the proposed model to solve the inverse problem and infer blood glucose levels from measured glucose concentrations in sweat. To this end, the pharmacokinetic model parameters with the highest sensitivity were also optimized so as to achieve a personalized estimation. Our strategy was tested on a dataset composed of 108 samples from healthy volunteers and diabetic patients. Our glucose transport model improves over the state-of-the-art in estimating sweat glucose concentrations from blood levels (higher accuracy, p<0.001). Additionally, our optimization strategy effectively solved the inverse problem, yielding a Pearson correlation coefficient of 0.98 across all 108 data points, with an average root-mean-square-percent-error of 12%±8%. This significantly outperforms the best sweat-blood glucose correlation reported in the existing literature (0.75). Our innovative optimization strategy, also leveraging more accurate modeling, shows promising results, paving the way for non-invasive blood glucose monitoring and, possibly, improved diabetes management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小豆包应助yk采纳,获得10
2秒前
llnysl完成签到 ,获得积分10
5秒前
9秒前
多年以后发布了新的文献求助10
13秒前
之组长了完成签到 ,获得积分10
16秒前
内向映天完成签到 ,获得积分10
20秒前
Eva应助yutingting采纳,获得50
21秒前
mo完成签到 ,获得积分10
21秒前
23秒前
ww发布了新的文献求助10
23秒前
Serena完成签到 ,获得积分10
23秒前
林子青完成签到,获得积分10
26秒前
26秒前
Virtual应助司徒芷雪采纳,获得20
27秒前
28秒前
ww完成签到,获得积分10
34秒前
深情安青应助jouholly采纳,获得10
36秒前
怕黑钢笔完成签到 ,获得积分10
49秒前
好数据完成签到 ,获得积分10
49秒前
Jimmyli关注了科研通微信公众号
49秒前
50秒前
52秒前
SciGPT应助孙朱珠采纳,获得10
53秒前
懵懂的晓曼完成签到,获得积分10
54秒前
55秒前
阿州举报王优秀求助涉嫌违规
56秒前
olivia发布了新的文献求助10
1分钟前
1分钟前
殴打阿达发布了新的文献求助80
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI2S应助朴素海亦采纳,获得10
1分钟前
jouholly发布了新的文献求助10
1分钟前
Jimmyli发布了新的文献求助10
1分钟前
夏紊完成签到 ,获得积分10
1分钟前
张丽娟发布了新的文献求助10
1分钟前
搜集达人应助Xxxxzzz采纳,获得30
1分钟前
abull完成签到,获得积分10
1分钟前
帆蚌侠发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4315199
求助须知:如何正确求助?哪些是违规求助? 3834163
关于积分的说明 11993979
捐赠科研通 3474527
什么是DOI,文献DOI怎么找? 1905363
邀请新用户注册赠送积分活动 951922
科研通“疑难数据库(出版商)”最低求助积分说明 853483