Scoring algorithm for predicting periodontitis in dentate adults using self‐report measures — National Health and Nutrition Examination Survey 2009–2012

医学 全国健康与营养检查调查 牙周炎 梅德林 老年学 家庭医学 牙科 环境卫生 政治学 法学 人口
作者
Paul I. Eke,Wei Liang,Gina Thornton‐Evans,Wenche S. Borgnakke
出处
期刊:Periodontology 2000 [Wiley]
标识
DOI:10.1111/prd.12624
摘要

Abstract Aim Our goal was to develop and externally validate oral health self‐report measures for predicting periodontitis in a representative U.S. adult population (30–79 years old) and to evaluate a predictive scoring tool for periodontitis constructed from the best performing model parameter estimates. Methods The predictive models for periodontitis using demographic characteristics and self‐reported oral health measures were developed and tested with the National Health and Nutrition Examination Survey (NHANES) 2009–2012 data (development 2009–2010, validation 2011–2012). The best performing model was externally validated against clinical periodontitis cases defined by measurements from a full‐mouth periodontal examination at six sites around all teeth excluding third molars. A predictive scoring tool derived from the transformed sum of the model coefficient estimates was also externally validated. Model performances were evaluated by their sensitivity, specificity, predictive accuracy, and area under the receiver‐operating characteristic curve (AUROC). Results Our best model used self‐reported oral health, smoking, and demographics. Predictive Risk Scores (PRS) of ≥65 captured about 98% of the true periodontitis cases. Three forms of the model (1—individual risk factor variables, 2—continuous PRS, and 3—PRS categories) were applied to the development and validation data sets. Overall, all three forms had high sensitivity (>84%) in both the development and validation data sets and had similar AUROC (around 80%). Specificity was low to moderate. When externally validated, the model incorporating PRS as a continuous measure had high sensitivity (84.0%) and low specificity (57.5%), with AUROC of 79.5% and predictive accuracy of 71.6%. Similarly, when PRS as a categorical variable was externally validated, the model had a high sensitivity (82.8%) and low specificity (59.9%), with an AUROC of 79.3% and predictive accuracy of 72.0%. Conclusion Overall, modeling of four self‐report oral health measures, combined with smoking and demographic characteristics, performs well in predicting clinical periodontitis in a nationally representative sample of the adult dentate US adult population. Compared with clinical periodontal examination, this approach is promising as a viable, non‐clinical, and much less resource‐intensive alternative method for estimating the burden of periodontitis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助梦于行采纳,获得10
刚刚
大板栗关注了科研通微信公众号
1秒前
1秒前
1秒前
BigBoss发布了新的文献求助10
2秒前
2秒前
cosy完成签到 ,获得积分10
2秒前
诗雯_乞依安应助123采纳,获得10
3秒前
灌水大王完成签到,获得积分10
5秒前
5秒前
小美美完成签到 ,获得积分10
6秒前
张zhang发布了新的文献求助10
6秒前
斤斤发布了新的文献求助10
8秒前
乐乐应助咖啡续命采纳,获得10
10秒前
温暖笑容完成签到,获得积分20
12秒前
13秒前
13秒前
zxb关闭了zxb文献求助
13秒前
打打应助高兴荔枝采纳,获得10
14秒前
xW发布了新的文献求助10
15秒前
17秒前
您不疼完成签到,获得积分20
17秒前
20秒前
秋半雪发布了新的文献求助10
20秒前
您不疼发布了新的文献求助10
20秒前
xinghy应助放飞的羊驼采纳,获得10
21秒前
梦_筱彩完成签到 ,获得积分10
21秒前
22秒前
胡闹闹发布了新的文献求助10
22秒前
22秒前
22秒前
陈坤完成签到,获得积分10
23秒前
zxb关闭了zxb文献求助
23秒前
CipherSage应助安安采纳,获得10
23秒前
情怀应助大帅哥采纳,获得10
24秒前
我爱睡懒觉完成签到,获得积分10
24秒前
24秒前
无花果应助betty采纳,获得10
24秒前
传奇3应助璀璨采纳,获得10
25秒前
营养牛发布了新的文献求助10
25秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4110698
求助须知:如何正确求助?哪些是违规求助? 3649106
关于积分的说明 11557960
捐赠科研通 3354352
什么是DOI,文献DOI怎么找? 1842873
邀请新用户注册赠送积分活动 909091
科研通“疑难数据库(出版商)”最低求助积分说明 825936