Development and validation of a prediction model for myelosuppression in lung cancer patients after platinum-based doublet chemotherapy: a multifactorial analysis approach

肺癌 医学 化疗 肿瘤科 癌症研究 内科学
作者
Xueyan Li,Linyu Li,Lu Zhang
出处
期刊:American Journal of Cancer Research [e-Century Publishing Corporation]
卷期号:15 (2): 470-486
标识
DOI:10.62347/tfuc2568
摘要

To develop an individualized prediction model for myelosuppression risk in lung cancer patients undergoing platinum-based doublet chemotherapy and validate its predictive efficacy. A retrospective analysis was conducted on the clinical data of 584 lung cancer patients who received platinum-based doublet chemotherapy at The Affiliated Hospital of Qingdao University between January 2016 and December 2020. Patients were randomly assigned to a training cohort (n=391) and a validation cohort (n=193). Myelosuppression occurred in 280 (71.6%) patients in the training cohort and 132 (68.4%) in the validation cohort. Univariate analysis and LASSO regression were used to identify independent risk factors for myelosuppression. Prediction models were developed using Support Vector Machine (SVM), Random Forest, Extreme Gradient Boosting (XGBoost), and Adaptive Boosting (Adaboost). Model performance was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and Decision Curve Analysis (DCA). The SHAP algorithm was employed to evaluate feature importance, and a nomogram was developed for individual risk prediction. LASSO regression identified 10 independent risk factors for myelosuppression: age, body mass index (BMI), white blood cell count, neutrophil count, platelet count, total protein, gender, treatment regimen, targeted therapy, and first chemotherapy cycle. In the training cohort, the XGBoost model exhibited the best performance, with an area under the curve (AUC) of 0.855 (95% CI: 0.813-0.897), while the AUC in the validation cohort was 0.793. SHAP analysis identified white blood cell count, platelet count, neutrophil count, BMI, and age as the most influential predictors. The SHAP analysis based on the XGBoost model demonstrated substantial value. This study successfully developed an individualized prediction model for myelosuppression risk in lung cancer patients following platinum-based doublet chemotherapy, with the XGBoost model achieving high predictive accuracy and clinical utility. The model provides a valuable tool for guiding precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宓之云发布了新的文献求助10
1秒前
bin完成签到,获得积分10
1秒前
鲍复天完成签到,获得积分10
2秒前
人怎么能捅这么大的篓子完成签到,获得积分10
2秒前
2秒前
锋回露转123完成签到,获得积分10
3秒前
4秒前
look完成签到,获得积分10
4秒前
4秒前
4秒前
沅宝完成签到 ,获得积分10
5秒前
5秒前
5秒前
wwww完成签到 ,获得积分10
6秒前
8秒前
8秒前
KK发布了新的文献求助30
8秒前
9秒前
糕糕发布了新的文献求助10
10秒前
zhang狗子发布了新的文献求助10
10秒前
11秒前
彭于晏应助93采纳,获得10
12秒前
12秒前
体贴的青烟完成签到,获得积分10
12秒前
季乔发布了新的文献求助10
13秒前
1391451653完成签到,获得积分10
13秒前
14秒前
wenjian完成签到,获得积分10
14秒前
yong发布了新的文献求助20
14秒前
玛卡巴卡发布了新的文献求助10
15秒前
科研通AI5应助耍酷蝴蝶采纳,获得30
15秒前
17秒前
18秒前
18秒前
20秒前
杰king完成签到,获得积分10
22秒前
22秒前
香蕉觅云应助季乔采纳,获得10
22秒前
爆米花应助lucas采纳,获得10
23秒前
开心绫完成签到,获得积分10
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784400
求助须知:如何正确求助?哪些是违规求助? 3329418
关于积分的说明 10242321
捐赠科研通 3044942
什么是DOI,文献DOI怎么找? 1671443
邀请新用户注册赠送积分活动 800346
科研通“疑难数据库(出版商)”最低求助积分说明 759372