ARTransformer: An Architecture of Resolution Representation Learning for Cross‐Resolution Person Re‐Identification

计算机科学 分辨率(逻辑) 鉴定(生物学) 代表(政治) 建筑 人工智能 自然语言处理 人机交互 政治学 植物 生物 政治 艺术 视觉艺术 法学
作者
Xing Lü,Fuwen Lai,Zhixiang Cao,Daoxun Xia
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:37 (4-5)
标识
DOI:10.1002/cpe.8348
摘要

ABSTRACT Cross‐resolution person re‐identification (CR‐ReID) seeks to overcome the challenge of retrieving and matching specific person images across cameras with varying resolutions. Numerous existing studies utilize established CNNs and ViTs to resize captured low‐resolution (LR) images and align them with high‐resolution (HR) image features or construct common feature spaces to match between images of different resolutions. However, these methods ignore the potential feature connection between the LR and HR images of the same pedestrian identity. Besides, the CNNs or ViTs usually obtain outliers within the attention maps of LR images; this inclination to excessively concentrate on anomalous information may obscure the genuine and anticipated characteristics between images, which makes it challenging to extract meaningful information from the images. In this work, we propose the abnormal feature elimination and reconfiguration Transformer (ARTransformer), a novel network architecture for robust cross‐resolution person re‐identification tasks. This method uses a resolution feature discriminator to learn resolution‐invariant features and output feature matrices of images with different resolutions. It then calculates the potential feature relationships between images of pedestrians with the same identity but different resolutions through a new cross‐resolution landmark agent attention (CR‐LAA) mechanism. Conclusively, it utilizes output feature matrices to model LR and HR image interactions by mitigating abnormal image features and prioritizing attention on the target person by learning representations from input images of various resolutions. Experimental results show that ARTransformer performs well in matching images with different resolutions, even with unseen resolution, and extensive evaluations on four real‐world datasets confirm the excellent results of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助马路采纳,获得10
1秒前
1秒前
kk驳回了望昔应助
2秒前
2秒前
3秒前
SSS发布了新的文献求助10
3秒前
复杂的蛋挞完成签到 ,获得积分10
4秒前
传奇3应助椰子冻采纳,获得30
4秒前
英姑应助王博林采纳,获得10
4秒前
orixero应助锋蜜采纳,获得10
5秒前
大道无形我有型完成签到,获得积分10
5秒前
paper完成签到 ,获得积分10
6秒前
nine2652完成签到 ,获得积分0
6秒前
cuicy发布了新的文献求助10
6秒前
6秒前
诸觅双完成签到 ,获得积分10
7秒前
NexusExplorer应助苏墨白采纳,获得10
8秒前
坚定的道天完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
xliang233完成签到 ,获得积分10
9秒前
Drwang发布了新的文献求助10
9秒前
9秒前
9秒前
领导范儿应助Xie采纳,获得10
10秒前
啦啦啦啦啦啦啦完成签到,获得积分10
10秒前
无限的勒应助hunzizzzzz采纳,获得10
10秒前
li发布了新的文献求助10
10秒前
ximi驳回了今后应助
11秒前
默苍离倒拔琉璃树完成签到,获得积分10
11秒前
12秒前
马路发布了新的文献求助10
13秒前
13秒前
vffg完成签到,获得积分10
15秒前
通天塔完成签到,获得积分10
15秒前
xclin完成签到 ,获得积分20
15秒前
15秒前
lieomey发布了新的文献求助10
15秒前
爆米花应助youjiwuji采纳,获得50
16秒前
16秒前
qiyun发布了新的文献求助10
17秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4288581
求助须知:如何正确求助?哪些是违规求助? 3815767
关于积分的说明 11950339
捐赠科研通 3460447
什么是DOI,文献DOI怎么找? 1897954
邀请新用户注册赠送积分活动 946369
科研通“疑难数据库(出版商)”最低求助积分说明 849769