亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of blood-derived exosomal tumor RNA signatures as noninvasive diagnostic biomarkers for multi-cancer: a multi-phase, multi-center study

生物 鉴定(生物学) 癌症 核糖核酸 生物标志物 小RNA 计算生物学 癌症研究 基因 遗传学 植物
作者
Fubo Wang,Chengbang Wang,Shaohua Chen,Chunmeng Wei,Jin Ji,Yan Liu,Leifeng Liang,Yifeng Chen,Xing Li,Lin Zhao,Xiaolei Shi,Fang Yu,Weimin Lu,Tianman Li,Zhe Liu,Wenhao Lu,Tingting Li,Xiangui Hu,Meimei Li,Fuchen Liu
出处
期刊:Molecular Cancer [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12943-025-02271-4
摘要

Cancer remains a leading global cause of mortality, making early detection crucial for improving survival outcomes. The study aims to develop a machine learning-enabled blood-derived exosomal RNA profiling platform for multi-cancer detection and localization. In this multi-phase, multi-center study, we analyzed RNA from exosomes derived from peripheral blood plasma in 818 participants across eight cancer types during the discovery phase. Machine learning techniques were applied to identify potential pan-cancer biomarkers. During the screening and model validation phases, the sample size was progressively expanded to 1,385 participants in two steps, while the candidate biomarkers were refined into a set of 12 exosomal tumor RNA signatures (ETR.sig). In the subsequent model construction phase, diagnostic models were developed using the expanded cohort and ETR.sig. Statistical analyses included the calculation of receiver operating characteristic (ROC) curves and AUC values to assess the models' ability to distinguish cancer cases from controls and determine tumor origins. To further validate and explore the biological relevance of the identified biomarkers, we integrated tissue RNA-seq, single-cell data, and clinical information. Machine learning analysis initially identified 33 candidate biomarkers, which were narrowed down to 20 ETR.sig in the screening phase and 12 ETR.sig in the validation phase. In the model construction phase, a diagnostic model based on ETR.sig, built using the Random Forest (RF) algorithm, showed excellent performance with an AUC of 0.915 for distinguishing pan-cancer from controls. The multi-class classification model also demonstrated strong classification power, with macro-average and micro-average AUCs of 0.983 and 0.985, respectively, for differentiating between eight cancer types. Additionally, tumor origin classification using the RF-based diagnostic models achieved high AUC values: BRCA 0.976, COAD 0.98, KIRC 0.947, LIHC 0.967, LUAD 0.853, OV 0.972, PAAD 0.977, and PRAD 0.898. Integration of tissue RNA-seq, single-cell data, and clinical information revealed key associations between ETR.sig-related genes and tumor development. The study demonstrates the robust potential of exosomal RNA as a minimally invasive biomarker resource for cancer detection. The developed ETR.sig platform offers a promising tool for precision oncology and broad-spectrum cancer screening, integrating advanced computational models with nanoscale vesicle biology for accurate and rapid diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助灵巧的之瑶采纳,获得10
1秒前
田様应助微笑雪兰采纳,获得10
15秒前
JamesPei应助隐形的绮山采纳,获得10
17秒前
23秒前
24秒前
27秒前
29秒前
30秒前
lichunxu发布了新的文献求助10
37秒前
bkagyin应助灵巧的之瑶采纳,获得10
37秒前
lsx完成签到,获得积分10
45秒前
杨震完成签到,获得积分10
50秒前
无花果应助执剑燃此生采纳,获得10
52秒前
jimmy_bytheway完成签到,获得积分0
59秒前
1分钟前
机灵的衬衫完成签到 ,获得积分10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
共享精神应助科研通管家采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
执剑燃此生完成签到,获得积分10
1分钟前
灵巧的之瑶完成签到,获得积分20
1分钟前
爱爱完成签到 ,获得积分10
1分钟前
77完成签到 ,获得积分10
1分钟前
ddd完成签到,获得积分20
2分钟前
微笑雪兰完成签到,获得积分10
2分钟前
2分钟前
朕要读三千文献应助mnhn采纳,获得10
2分钟前
2分钟前
2分钟前
nnnn发布了新的文献求助10
2分钟前
我不会发布了新的文献求助10
2分钟前
烟花应助nnnn采纳,获得10
2分钟前
2分钟前
2分钟前
情怀应助无私的梦凡采纳,获得10
2分钟前
小猫炒饭发布了新的文献求助10
2分钟前
2分钟前
承序完成签到,获得积分10
2分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827212
求助须知:如何正确求助?哪些是违规求助? 3369556
关于积分的说明 10456454
捐赠科研通 3089256
什么是DOI,文献DOI怎么找? 1699738
邀请新用户注册赠送积分活动 817497
科研通“疑难数据库(出版商)”最低求助积分说明 770251