亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Risk Assessment of Deep Coal and Gas Outbursts Based on IQPSO-SVM

支持向量机 粒子群优化 计算机科学 一般化 稳健性(进化) 群体行为 人工智能 数学优化 机器学习 工程类 数学 数学分析 基因 化学 生物化学 废物管理
作者
Junqi Zhu,Li Yang,Xue Wang,Haotian Zheng,Mengdi Gu,Shanshan Li,Xin Fang
出处
期刊:International Journal of Environmental Research and Public Health [Multidisciplinary Digital Publishing Institute]
卷期号:19 (19): 12869-12869 被引量:11
标识
DOI:10.3390/ijerph191912869
摘要

Coal and gas outbursts seriously threaten the mining safety of deep coal mines. The evaluation of the risk grade of these events can effectively prevent the occurrence of safety accidents in deep coal mines. Characterized as a high-dimensional, nonlinear, and small-sample problem, a risk evaluation method for deep coal and gas outbursts based on an improved quantum particle swarm optimization support vector machine (IQPSO-SVM) was constructed by leveraging the unique advantages of a support vector machine (SVM) in solving small-sample, high-dimension, and nonlinear problems. Improved quantum particle swarm optimization (IQPSO) is used to optimize the penalty and kernel function parameters of SVM, which can solve the optimal local risk and premature convergence problems of particle swarm optimization (PSO) and quantum particle swarm optimization (QPSO) in the training process. The proposed algorithm can also balance the relationship between the global search and local search in the algorithm design to improve the parallelism, stability, robustness, global optimum, and model generalization ability of data fitting. The experimental results prove that, compared with the test results of the standard SVM, particle swarm optimization support vector machine (PSO-SVM), and quantum particle swarm optimization support vector machine (QPSO-SVM) models, IQPSO-SVM significantly improves the risk assessment accuracy of coal and gas outbursts in deep coal mines. Therefore, this study provides a new idea for the prevention of deep coal and gas outburst accidents based on risk prediction and also provides an essential reference for the scientific evaluation of other high-dimensional and nonlinear problems in other fields. This study can also provide a theoretical basis for preventing coal and gas outburst accidents in deep coal mines and help coal mining enterprises improve their safety management ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
称心如意完成签到 ,获得积分10
8秒前
cdercder应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
46秒前
50秒前
shea发布了新的文献求助10
55秒前
ccj完成签到,获得积分10
1分钟前
乐乐应助shea采纳,获得10
1分钟前
JazzWon完成签到,获得积分10
1分钟前
打打应助专注纸飞机采纳,获得10
1分钟前
专注纸飞机完成签到,获得积分10
1分钟前
崔柯梦完成签到,获得积分10
1分钟前
zqq完成签到,获得积分0
1分钟前
情怀应助Dc采纳,获得10
1分钟前
科研通AI5应助魁梧的败采纳,获得10
1分钟前
1分钟前
Jasper应助shinn采纳,获得10
1分钟前
魁梧的败发布了新的文献求助10
1分钟前
Dc完成签到,获得积分10
2分钟前
2分钟前
shinn发布了新的文献求助10
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
wanci应助科研通管家采纳,获得10
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
2分钟前
顾矜应助意兴不阑珊采纳,获得10
2分钟前
2分钟前
Dc发布了新的文献求助10
2分钟前
liuyuanhao完成签到,获得积分10
2分钟前
2分钟前
1121完成签到 ,获得积分10
2分钟前
Microbiota完成签到,获得积分10
3分钟前
3分钟前
Chhc2发布了新的文献求助10
3分钟前
3分钟前
3分钟前
李同学发布了新的文献求助10
3分钟前
李同学完成签到,获得积分10
3分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847640
求助须知:如何正确求助?哪些是违规求助? 3390328
关于积分的说明 10561451
捐赠科研通 3110665
什么是DOI,文献DOI怎么找? 1714431
邀请新用户注册赠送积分活动 825231
科研通“疑难数据库(出版商)”最低求助积分说明 775421