UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat

人工智能 支持向量机 机器学习 均方误差 人工神经网络 算法 传感器融合 随机森林 决定系数 预测建模 计算机科学 数学 统计
作者
Shuaipeng Fei,Muhammad Adeel Hassan,Yonggui Xiao,Xin Su,Zhen Chen,Qian Cheng,Fuyi Duan,Riqiang Chen,Yuntao Ma
出处
期刊:Precision Agriculture [Springer Science+Business Media]
卷期号:24 (1): 187-212 被引量:187
标识
DOI:10.1007/s11119-022-09938-8
摘要

Early prediction of grain yield helps scientists to make better breeding decisions for wheat. Use of machine learning (ML) methods for fusion of unmanned aerial vehicle (UAV)-based multi-sensor data can improve the prediction accuracy of crop yield. For this, five ML algorithms including Cubist, support vector machine (SVM), deep neural network (DNN), ridge regression (RR) and random forest (RF) were used for multi-sensor data fusion and ensemble learning for grain yield prediction in wheat. A set of thirty wheat cultivars and breeding lines were grown under three irrigation treatments i.e., light, moderate and high irrigation treatments to evaluate the yield prediction capabilities of a low-cost multi-sensor (RGB, multi-spectral and thermal infrared) UAV platform. Multi-sensor data fusion-based yield prediction showed higher accuracy compared to individual-sensor data in each ML model. The coefficient of determination (R2) values for Cubist, SVM, DNN and RR models regarding grain yield prediction were observed from 0.527 to 0.670. Moreover, the results of ensemble learning through integrating the above models illustrated further increase in accuracy. The predictions of ensemble learning showed high R2 values up to 0.692, which was higher as compared to individual ML models across the multi-sensor data. Root mean square error (RMSE), residual prediction deviation (RPD) and ratio of prediction performance to inter-quartile range (RPIQ) were calculated to be 0.916 t ha−1, 1.771 and 2.602, respectively. The results proved that low altitude UAV-based multi-sensor data can be used for early grain yield prediction using data fusion and an ensemble learning framework with high accuracy. This high-throughput phenotyping approach is valuable for improving the efficiency of selection in large breeding activities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助chris采纳,获得10
1秒前
1秒前
小郭发布了新的文献求助10
1秒前
2秒前
2秒前
火龙果发布了新的文献求助10
2秒前
2秒前
bkagyin应助傲娇初阳采纳,获得10
3秒前
张文康发布了新的文献求助10
3秒前
5秒前
zhang08完成签到,获得积分10
5秒前
sleepingfish应助rsy采纳,获得20
5秒前
超级丝发布了新的文献求助10
6秒前
思源应助哈哈哈哈哈采纳,获得10
6秒前
Ryang发布了新的文献求助10
7秒前
小齐爱科研完成签到,获得积分10
7秒前
椿·完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
葛博发布了新的文献求助80
8秒前
大富豪发布了新的文献求助10
8秒前
夜未央完成签到,获得积分10
11秒前
核桃应助冰冰子采纳,获得10
11秒前
YuMY发布了新的文献求助10
12秒前
12秒前
heshuyao完成签到,获得积分10
12秒前
蘇q完成签到 ,获得积分10
13秒前
13秒前
同玉完成签到,获得积分10
13秒前
蓝蜗牛完成签到,获得积分10
14秒前
14秒前
酒在远方完成签到,获得积分10
16秒前
16秒前
zhang08发布了新的文献求助20
17秒前
YuMY完成签到,获得积分10
18秒前
ljssll发布了新的文献求助10
19秒前
夜凉如水发布了新的文献求助10
19秒前
科研通AI5应助踏实的从波采纳,获得30
21秒前
我是老大应助zhangjianzeng采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4400257
求助须知:如何正确求助?哪些是违规求助? 3887963
关于积分的说明 12100635
捐赠科研通 3532271
什么是DOI,文献DOI怎么找? 1938293
邀请新用户注册赠送积分活动 979226
科研通“疑难数据库(出版商)”最低求助积分说明 876460