Multi-Agent Graph Convolutional Reinforcement Learning for Dynamic Electric Vehicle Charging Pricing

强化学习 联营 计算机科学 动态定价 充电站 图形 分布式计算 人工智能 电动汽车 理论计算机科学 功率(物理) 量子力学 物理 业务 营销
作者
Weijia Zhang,Hao Liu,Jindong Han,Yong Ge,Hui Xiong
标识
DOI:10.1145/3534678.3539416
摘要

Electric Vehicles (EVs) have been emerging as a promising low-carbon transport target. While a large number of public charging stations are available, the use of these stations is often imbalanced, causing many problems to Charging Station Operators (CSOs). To this end, in this paper, we propose a Multi-Agent Graph Convolutional Reinforcement Learning (MAGC) framework to enable CSOs to achieve more effective use of these stations by providing dynamic pricing for each of the continuously arising charging requests with optimizing multiple long-term commercial goals. Specifically, we first formulate this charging station request-specific dynamic pricing problem as a mixed competitive-cooperative multi-agent reinforcement learning task, where each charging station is regarded as an agent. Moreover, by modeling the whole charging market as a dynamic heterogeneous graph, we devise a multi-view heterogeneous graph attention networks to integrate complex interplay between agents induced by their diversified relationships. Then, we propose a shared meta generator to generate individual customized dynamic pricing policies for large-scale yet diverse agents based on the extracted meta characteristics. Finally, we design a contrastive heterogeneous graph pooling representation module to learn a condensed yet effective state action representation to facilitate policy learning of large-scale agents. Extensive experiments on two real-world datasets demonstrate the effectiveness of MAGC and empirically show that the overall use of stations can be improved if all the charging stations in a charging market embrace our dynamic pricing policy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助蜗牛撵大象采纳,获得10
1秒前
刘老哥6发布了新的文献求助10
1秒前
羊_应助wzy512采纳,获得10
4秒前
荧123456完成签到,获得积分10
7秒前
HHHHH发布了新的文献求助10
10秒前
舒心靖琪完成签到 ,获得积分10
11秒前
一桶吃八碗完成签到,获得积分10
12秒前
科研通AI5应助亢kxh采纳,获得10
13秒前
冷月芳华完成签到,获得积分10
13秒前
小二郎应助Ella采纳,获得10
13秒前
自由的雁完成签到,获得积分10
14秒前
14秒前
刻苦的坤完成签到,获得积分10
15秒前
16秒前
19秒前
20秒前
21秒前
jeremy发布了新的文献求助10
25秒前
完美世界应助lqm采纳,获得10
26秒前
29秒前
李倇仪完成签到,获得积分10
30秒前
swjs08发布了新的文献求助20
31秒前
英俊的铭应助越战越勇采纳,获得10
31秒前
稀里糊涂的吃瓜人完成签到 ,获得积分10
32秒前
亢kxh发布了新的文献求助10
32秒前
33秒前
lihua完成签到,获得积分10
34秒前
mamahaha完成签到 ,获得积分10
34秒前
35秒前
花花完成签到,获得积分10
35秒前
月亮完成签到,获得积分10
36秒前
37秒前
38秒前
beyondjun发布了新的文献求助10
39秒前
39秒前
张张发布了新的文献求助30
40秒前
科研通AI5应助欧了买了噶采纳,获得10
40秒前
Yunis完成签到 ,获得积分10
41秒前
AiX-zzzzz完成签到,获得积分10
41秒前
科研通AI5应助亢kxh采纳,获得10
41秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831508
求助须知:如何正确求助?哪些是违规求助? 3373738
关于积分的说明 10481136
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702949
邀请新用户注册赠送积分活动 819215
科研通“疑难数据库(出版商)”最低求助积分说明 771307