Automated Prediction of Kidney Failure in IgA Nephropathy with Deep Learning from Biopsy Images

医学 肾病 活检 接收机工作特性 试验预测值 金标准(测试) 放射科 人工智能 内科学 计算机科学 内分泌学 糖尿病
作者
Francesca Testa,Francesco Fontana,Federico Pollastri,Johanna Chester,Marco Leonelli,Francesco Giaroni,F. Gualtieri,Federico Bolelli,Elena Mancini,Maurizio Nordio,Paolo Sacco,Giulia Ligabue,Silvia Giovanella,Maria Ferri,Gaetano Alfano,Loreto Gesualdo,Simonetta Cimino,Gabriele Donati,Costantino Grana,Riccardo Magistroni
出处
期刊:Clinical Journal of The American Society of Nephrology [Lippincott Williams & Wilkins]
卷期号:17 (9): 1316-1324 被引量:8
标识
DOI:10.2215/cjn.01760222
摘要

Digital pathology and artificial intelligence offer new opportunities for automatic histologic scoring. We applied a deep learning approach to IgA nephropathy biopsy images to develop an automatic histologic prognostic score, assessed against ground truth (kidney failure) among patients with IgA nephropathy who were treated over 39 years. We assessed noninferiority in comparison with the histologic component of currently validated predictive tools. We correlated additional histologic features with our deep learning predictive score to identify potential additional predictive features.Training for deep learning was performed with randomly selected, digitalized, cortical Periodic acid-Schiff-stained sections images (363 kidney biopsy specimens) to develop our deep learning predictive score. We estimated noninferiority using the area under the receiver operating characteristic curve (AUC) in a randomly selected group (95 biopsy specimens) against the gold standard Oxford classification (MEST-C) scores used by the International IgA Nephropathy Prediction Tool and the clinical decision supporting system for estimating the risk of kidney failure in IgA nephropathy. We assessed additional potential predictive histologic features against a subset (20 kidney biopsy specimens) with the strongest and weakest deep learning predictive scores.We enrolled 442 patients; the 10-year kidney survival was 78%, and the study median follow-up was 6.7 years. Manual MEST-C showed no prognostic relationship for the endocapillary parameter only. The deep learning predictive score was not inferior to MEST-C applied using the International IgA Nephropathy Prediction Tool and the clinical decision supporting system (AUC of 0.84 versus 0.77 and 0.74, respectively) and confirmed a good correlation with the tubolointerstitial score (r=0.41, P<0.01). We observed no correlations between the deep learning prognostic score and the mesangial, endocapillary, segmental sclerosis, and crescent parameters. Additional potential predictive histopathologic features incorporated by the deep learning predictive score included (1) inflammation within areas of interstitial fibrosis and tubular atrophy and (2) hyaline casts.The deep learning approach was noninferior to manual histopathologic reporting and considered prognostic features not currently included in MEST-C assessment.This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_07_26_CJN01760222.mp3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
啦啦啦啦发布了新的文献求助10
2秒前
3秒前
tutu发布了新的文献求助30
4秒前
4秒前
xc发布了新的文献求助10
5秒前
重要的溪流完成签到,获得积分10
6秒前
善良书蕾发布了新的文献求助10
7秒前
猪猪hero发布了新的文献求助10
9秒前
CAOHOU应助幽壑之潜蛟采纳,获得10
10秒前
啦啦啦啦完成签到,获得积分10
12秒前
12秒前
汤圆完成签到 ,获得积分10
14秒前
14秒前
谷gu发布了新的文献求助10
18秒前
myy发布了新的文献求助10
18秒前
星期八完成签到,获得积分10
20秒前
躺平完成签到 ,获得积分10
20秒前
Vyasa完成签到,获得积分10
22秒前
28秒前
大气的乌冬面完成签到,获得积分10
31秒前
科研通AI2S应助xx采纳,获得10
32秒前
mmyhn发布了新的文献求助200
32秒前
33秒前
violet_119发布了新的文献求助10
36秒前
ED应助sunli3645采纳,获得30
37秒前
37秒前
黑妖完成签到,获得积分10
40秒前
Qiao发布了新的文献求助10
40秒前
远山完成签到,获得积分10
41秒前
42秒前
43秒前
轻松青荷发布了新的文献求助20
43秒前
45秒前
syangZ完成签到,获得积分10
46秒前
柴郡喵完成签到,获得积分10
47秒前
你去打输出完成签到,获得积分10
48秒前
wantmygo应助Mic采纳,获得150
48秒前
汉堡包应助chen王采纳,获得10
49秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4120583
求助须知:如何正确求助?哪些是违规求助? 3658760
关于积分的说明 11582077
捐赠科研通 3360363
什么是DOI,文献DOI怎么找? 1846322
邀请新用户注册赠送积分活动 911171
科研通“疑难数据库(出版商)”最低求助积分说明 827339