亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated Prediction of Kidney Failure in IgA Nephropathy with Deep Learning from Biopsy Images

医学 肾病 活检 接收机工作特性 试验预测值 金标准(测试) 放射科 人工智能 内科学 计算机科学 内分泌学 糖尿病
作者
Francesca Testa,Francesco Fontana,Federico Pollastri,Johanna Chester,Marco Leonelli,Francesco Giaroni,F. Gualtieri,Federico Bolelli,Elena Mancini,Maurizio Nordio,Paolo Sacco,Giulia Ligabue,Silvia Giovanella,Maria Ferri,Gaetano Alfano,Loreto Gesualdo,Simonetta Cimino,Gabriele Donati,Costantino Grana,Riccardo Magistroni
出处
期刊:Clinical Journal of The American Society of Nephrology [Lippincott Williams & Wilkins]
卷期号:17 (9): 1316-1324 被引量:6
标识
DOI:10.2215/cjn.01760222
摘要

Digital pathology and artificial intelligence offer new opportunities for automatic histologic scoring. We applied a deep learning approach to IgA nephropathy biopsy images to develop an automatic histologic prognostic score, assessed against ground truth (kidney failure) among patients with IgA nephropathy who were treated over 39 years. We assessed noninferiority in comparison with the histologic component of currently validated predictive tools. We correlated additional histologic features with our deep learning predictive score to identify potential additional predictive features.Training for deep learning was performed with randomly selected, digitalized, cortical Periodic acid-Schiff-stained sections images (363 kidney biopsy specimens) to develop our deep learning predictive score. We estimated noninferiority using the area under the receiver operating characteristic curve (AUC) in a randomly selected group (95 biopsy specimens) against the gold standard Oxford classification (MEST-C) scores used by the International IgA Nephropathy Prediction Tool and the clinical decision supporting system for estimating the risk of kidney failure in IgA nephropathy. We assessed additional potential predictive histologic features against a subset (20 kidney biopsy specimens) with the strongest and weakest deep learning predictive scores.We enrolled 442 patients; the 10-year kidney survival was 78%, and the study median follow-up was 6.7 years. Manual MEST-C showed no prognostic relationship for the endocapillary parameter only. The deep learning predictive score was not inferior to MEST-C applied using the International IgA Nephropathy Prediction Tool and the clinical decision supporting system (AUC of 0.84 versus 0.77 and 0.74, respectively) and confirmed a good correlation with the tubolointerstitial score (r=0.41, P<0.01). We observed no correlations between the deep learning prognostic score and the mesangial, endocapillary, segmental sclerosis, and crescent parameters. Additional potential predictive histopathologic features incorporated by the deep learning predictive score included (1) inflammation within areas of interstitial fibrosis and tubular atrophy and (2) hyaline casts.The deep learning approach was noninferior to manual histopathologic reporting and considered prognostic features not currently included in MEST-C assessment.This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_07_26_CJN01760222.mp3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助研友_闾丘枫采纳,获得10
23秒前
29秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
研友_闾丘枫完成签到,获得积分10
31秒前
33秒前
34秒前
清爽念寒完成签到,获得积分20
45秒前
1分钟前
YJJ发布了新的文献求助10
1分钟前
1分钟前
Toooo发布了新的文献求助10
1分钟前
Ocean完成签到,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
奋斗的友儿完成签到,获得积分10
2分钟前
2分钟前
TopBanana完成签到 ,获得积分10
2分钟前
搜集达人应助111采纳,获得10
3分钟前
Ava应助药叉采纳,获得10
3分钟前
3分钟前
Shang发布了新的文献求助10
3分钟前
彭于晏应助义气绿柳采纳,获得10
3分钟前
3分钟前
3分钟前
Yantuobio发布了新的文献求助10
3分钟前
J_W_完成签到,获得积分10
3分钟前
星辰大海应助duzhi采纳,获得10
3分钟前
Yantuobio完成签到,获得积分10
4分钟前
JamesPei应助YJJ采纳,获得10
4分钟前
cccc1111111完成签到,获得积分10
4分钟前
cccc1111111发布了新的文献求助10
4分钟前
4分钟前
4分钟前
药叉发布了新的文献求助10
4分钟前
YJJ发布了新的文献求助10
4分钟前
4分钟前
充电宝应助菜小包采纳,获得10
4分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808017
求助须知:如何正确求助?哪些是违规求助? 3352716
关于积分的说明 10359937
捐赠科研通 3068677
什么是DOI,文献DOI怎么找? 1685237
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766022