亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated Prediction of Kidney Failure in IgA Nephropathy with Deep Learning from Biopsy Images

医学 肾病 活检 接收机工作特性 试验预测值 金标准(测试) 放射科 人工智能 内科学 计算机科学 内分泌学 糖尿病
作者
Francesca Testa,Francesco Fontana,Federico Pollastri,Johanna Chester,Marco Leonelli,Francesco Giaroni,F. Gualtieri,Federico Bolelli,Elena Mancini,Maurizio Nordio,Paolo Sacco,Giulia Ligabue,Silvia Giovanella,Maria Ferri,Gaetano Alfano,Loreto Gesualdo,Simonetta Cimino,Gabriele Donati,Costantino Grana,Riccardo Magistroni
出处
期刊:Clinical Journal of The American Society of Nephrology [American Society of Nephrology]
卷期号:17 (9): 1316-1324 被引量:15
标识
DOI:10.2215/cjn.01760222
摘要

Background and objectives Digital pathology and artificial intelligence offer new opportunities for automatic histologic scoring. We applied a deep learning approach to IgA nephropathy biopsy images to develop an automatic histologic prognostic score, assessed against ground truth (kidney failure) among patients with IgA nephropathy who were treated over 39 years. We assessed noninferiority in comparison with the histologic component of currently validated predictive tools. We correlated additional histologic features with our deep learning predictive score to identify potential additional predictive features. Design, setting, participants, & measurements Training for deep learning was performed with randomly selected, digitalized, cortical Periodic acid–Schiff–stained sections images (363 kidney biopsy specimens) to develop our deep learning predictive score. We estimated noninferiority using the area under the receiver operating characteristic curve (AUC) in a randomly selected group (95 biopsy specimens) against the gold standard Oxford classification (MEST-C) scores used by the International IgA Nephropathy Prediction Tool and the clinical decision supporting system for estimating the risk of kidney failure in IgA nephropathy. We assessed additional potential predictive histologic features against a subset (20 kidney biopsy specimens) with the strongest and weakest deep learning predictive scores. Results We enrolled 442 patients; the 10-year kidney survival was 78%, and the study median follow-up was 6.7 years. Manual MEST-C showed no prognostic relationship for the endocapillary parameter only. The deep learning predictive score was not inferior to MEST-C applied using the International IgA Nephropathy Prediction Tool and the clinical decision supporting system (AUC of 0.84 versus 0.77 and 0.74, respectively) and confirmed a good correlation with the tubolointerstitial score (r=0.41, P <0.01). We observed no correlations between the deep learning prognostic score and the mesangial, endocapillary, segmental sclerosis, and crescent parameters. Additional potential predictive histopathologic features incorporated by the deep learning predictive score included ( 1 ) inflammation within areas of interstitial fibrosis and tubular atrophy and ( 2 ) hyaline casts. Conclusions The deep learning approach was noninferior to manual histopathologic reporting and considered prognostic features not currently included in MEST-C assessment. Podcast This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_07_26_CJN01760222.mp3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
顺利的沛萍完成签到,获得积分20
1秒前
6秒前
英俊的铭应助KSung采纳,获得10
8秒前
9秒前
光轮2000发布了新的文献求助10
12秒前
胡小壳发布了新的文献求助10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
19秒前
KSung发布了新的文献求助10
26秒前
32秒前
allrubbish完成签到,获得积分10
33秒前
池雨发布了新的文献求助10
37秒前
39秒前
45秒前
1分钟前
1分钟前
天天啃文献完成签到,获得积分20
1分钟前
我是老大应助顺利的沛萍采纳,获得10
1分钟前
高高的绿蓉完成签到,获得积分20
1分钟前
1分钟前
iacir33完成签到,获得积分10
1分钟前
1分钟前
我是老大应助光轮2000采纳,获得10
1分钟前
2分钟前
2分钟前
光轮2000发布了新的文献求助10
2分钟前
histamin完成签到,获得积分10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
2分钟前
maprang发布了新的文献求助20
2分钟前
肾宝发布了新的文献求助10
2分钟前
Orange应助肾宝采纳,获得10
2分钟前
俊逸的若魔完成签到 ,获得积分10
2分钟前
可爱的函函应助TiAmo采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498381
求助须知:如何正确求助?哪些是违规求助? 4595607
关于积分的说明 14449497
捐赠科研通 4528426
什么是DOI,文献DOI怎么找? 2481482
邀请新用户注册赠送积分活动 1465648
关于科研通互助平台的介绍 1438361