已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MSGNet: Multi-Scale Grid Based Automatic Cardiac Arrhythmia Detection in 12-Lead ECG

比例(比率) 计算机科学 心律失常 铅(地质) 网格 人工智能 心脏病学 医学 地质学 心房颤动 地图学 地貌学 地理 大地测量学
作者
Changqing Ji,Liyong Wang,Jing Qin,Shulong Zhang,Y. A. Han,Zumin Wang
标识
DOI:10.1109/swc57546.2023.10448925
摘要

The electrocardiogram (ECG) is a commonly used medical diagnostic tool for detecting various cardiac arrhythmias. Abnormal ECG signals are identified by distorted heartbeat morphology and irregular intervals. Traditional ECG analysis methods mainly rely on single-lead or single-scale signal segments, which overlook the potentially complementary information across the 12 leads and different scales. In this paper, we propose a novel Multi-Scale Grid based Network (MSGNet) for automatic cardiac arrhythmia detection in 12-lead ECG. MSGNet can extract spatial features of 12-lead ECG signals on different channels and temporal features of different scales on the same channel to effectively capture the features of distorted heartbeat morphology and irregular intervals. By fusing the morphological features of different channels, MSGNet extracts more diverse features from different spatial dimensions. Furthermore, we designed a multi-scale grid based feature extraction strategy to extract features of signal segments of various sizes at different scales. MSGNet integrates these two feature extraction strategies to simultaneously focus on both the morphological features of different leads and the temporal features within the same lead. We evaluated the performance of MSGNet on the publicly available ECG dataset CPSC 2018 and compared it with other existing ECG classification models. The experimental results show that MSGNet outperforms other existing ECG classification models, achieving an F1 score of 0.858 on this dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shweah2003完成签到,获得积分10
3秒前
镜中男人发布了新的文献求助10
4秒前
4秒前
AllWeKnow发布了新的文献求助10
5秒前
充电宝应助徐福上采纳,获得10
7秒前
科研通AI2S应助搞怪故事采纳,获得10
7秒前
9秒前
神内打工人完成签到 ,获得积分10
10秒前
笑而不语完成签到 ,获得积分10
10秒前
归一完成签到,获得积分10
10秒前
小羊zhou完成签到,获得积分10
13秒前
AllWeKnow完成签到,获得积分10
16秒前
科研通AI5应助钰y采纳,获得10
17秒前
17秒前
江小霜发布了新的文献求助10
18秒前
18秒前
科研通AI5应助苏苏苏采纳,获得10
18秒前
xuening完成签到,获得积分10
19秒前
19秒前
Zz完成签到 ,获得积分10
20秒前
红白夹心升糖完成签到,获得积分20
22秒前
manguang发布了新的文献求助10
22秒前
gakiki完成签到 ,获得积分10
22秒前
Leon发布了新的文献求助10
22秒前
wangliangyu发布了新的文献求助10
24秒前
24秒前
坦率的怡发布了新的文献求助30
25秒前
25秒前
25秒前
星辰大海应助科研通管家采纳,获得10
26秒前
26秒前
随遇而安应助科研通管家采纳,获得10
26秒前
随遇而安应助科研通管家采纳,获得10
26秒前
Owen应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
Hello应助科研通管家采纳,获得10
27秒前
27秒前
刘一发布了新的文献求助10
27秒前
科研通AI5应助像风一样采纳,获得10
28秒前
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792319
求助须知:如何正确求助?哪些是违规求助? 3336507
关于积分的说明 10281242
捐赠科研通 3053236
什么是DOI,文献DOI怎么找? 1675541
邀请新用户注册赠送积分活动 803492
科研通“疑难数据库(出版商)”最低求助积分说明 761436