Study on rotary tillage cutting simulations and energy consumption predictions of sandy ground soil in a Xinjiang cotton field

耕作 淤泥 能源消耗 环境科学 离散元法 土壤科学 岩土工程 工程类 地质学 机械 物理 生态学 电气工程 生物 古生物学
作者
Xiongye Zhang,Siyao Yu,Xue Hu,Lixin Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:217: 108646-108646 被引量:12
标识
DOI:10.1016/j.compag.2024.108646
摘要

Mechanical tillage before cotton sowing is a crucial process in cotton production. Numerical simulations of soil cutting and energy consumption predictions, along with optimization methods, are very important for understanding the interaction between tillage tools and soil, as well as guiding energy-efficient cultivation practices. The focus of this study is on the problem of cutting sandy silt in Xinjiang cotton fields. Sandy silt can be characterized by its low cohesion and large, loose particles. Starting from the macroscopic physical and mechanical properties of the soil, a soil contact mechanics model considering soil plastic deformation and bonding forces between soil particles is established. By optimizing the cotton field soil discrete element model and parameter calibration methods, the accuracy of the soil cutting simulation is improved. The principles and modelling steps of discrete element method (DEM) simulations for cutting soil are explained in detail, enabling the analysis and evaluation of the complex dynamic behaviour of soil under large deformation conditions and the mechanical properties of the cutting tool. The average error between the energy consumption measured in field rotary tillage experiments and simulation results is 7.04%. By utilizing the simulation results as a dataset, an extreme learning machine (ELM) without a physical model is employed to replace traditional polynomial regression for rapid energy consumption prediction based on the cutting parameters. The average error between the prediction results and simulation results is 4.34%. By using response surface methodology based on the predicted energy consumption, optimal working parameters are determined, resulting in a 10.02% reduction in the power consumption compared to the initial parameter settings. This effectively achieves energy savings in rotary tillage and further validates the accuracy of the simulation method and prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Young应助科研通管家采纳,获得10
刚刚
1秒前
一一发布了新的文献求助10
1秒前
810636174发布了新的文献求助30
2秒前
小小发布了新的文献求助10
2秒前
乆乆乆乆发布了新的文献求助10
2秒前
Seisyuuu完成签到,获得积分20
2秒前
3秒前
酷波er应助哈哈哈哈哈采纳,获得10
3秒前
BINGBING1230发布了新的文献求助10
3秒前
刘显波完成签到,获得积分10
4秒前
ljy发布了新的文献求助10
5秒前
Pendulium发布了新的文献求助10
6秒前
6秒前
倚楼听风雨完成签到 ,获得积分10
7秒前
yyds发布了新的文献求助10
9秒前
9秒前
科目三应助蟹蟹采纳,获得10
11秒前
析木完成签到,获得积分10
11秒前
ljy完成签到,获得积分10
13秒前
14秒前
空山新雨发布了新的文献求助10
15秒前
15秒前
16秒前
7788完成签到,获得积分10
16秒前
孙一涵发布了新的文献求助10
16秒前
大个应助yyds采纳,获得10
17秒前
顺顺利利发布了新的文献求助50
17秒前
在水一方应助Seisyuuu采纳,获得10
17秒前
rong发布了新的文献求助10
20秒前
Yy发布了新的文献求助10
21秒前
22秒前
22秒前
隐形的元珊完成签到,获得积分10
22秒前
24秒前
czephyr完成签到,获得积分10
24秒前
24秒前
26秒前
风萧零落发布了新的文献求助10
28秒前
SYH完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593859
求助须知:如何正确求助?哪些是违规求助? 4679724
关于积分的说明 14811189
捐赠科研通 4645218
什么是DOI,文献DOI怎么找? 2534702
邀请新用户注册赠送积分活动 1502747
关于科研通互助平台的介绍 1469430