亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Advancements in Data Augmentation and Transfer Learning: A Comprehensive Survey to Address Data Scarcity Challenges

计算机科学 学习迁移 机器学习 人工智能 稀缺 深度学习 再培训 数据科学 对抗制 业务 国际贸易 经济 微观经济学
作者
Salma Fayaz,Syed Zubair Ahmad Shah,Nusrat Mohi Ud Din,Naillah Gul,Assif Assad
出处
期刊:Recent advances in computer science and communications [Bentham Science]
卷期号:17 (8) 被引量:3
标识
DOI:10.2174/0126662558286875231215054324
摘要

Abstract: Deep Learning (DL) models have demonstrated remarkable proficiency in image classification and recognition tasks, surpassing human capabilities. The observed enhancement in performance can be attributed to the utilization of extensive datasets. Nevertheless, DL models have huge data requirements. Widening the learning capability of such models from limited samples even today remains a challenge, given the intrinsic constraints of small datasets. The trifecta of challenges, encompassing limited labeled datasets, privacy, poor generalization performance, and the costliness of annotations, further compounds the difficulty in achieving robust model performance. Overcoming the challenge of expanding the learning capabilities of Deep Learning models with limited sample sizes remains a pressing concern even today. To address this critical issue, our study conducts a meticulous examination of established methodologies, such as Data Augmentation and Transfer Learning, which offer promising solutions to data scarcity dilemmas. Data Augmentation, a powerful technique, amplifies the size of small datasets through a diverse array of strategies. These encompass geometric transformations, kernel filter manipulations, neural style transfer amalgamation, random erasing, Generative Adversarial Networks, augmentations in feature space, and adversarial and meta- learning training paradigms. : Furthermore, Transfer Learning emerges as a crucial tool, leveraging pre-trained models to facilitate knowledge transfer between models or enabling the retraining of models on analogous datasets. Through our comprehensive investigation, we provide profound insights into how the synergistic application of these two techniques can significantly enhance the performance of classification tasks, effectively magnifying scarce datasets. This augmentation in data availability not only addresses the immediate challenges posed by limited datasets but also unlocks the full potential of working with Big Data in a new era of possibilities in DL applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘雪完成签到 ,获得积分10
刚刚
1秒前
4秒前
枝头树上的布谷鸟完成签到,获得积分10
5秒前
6秒前
夕阳红红发布了新的文献求助10
7秒前
俊秀的鸵鸟完成签到,获得积分10
9秒前
12秒前
烨枫晨曦完成签到,获得积分10
14秒前
昏睡的绿海完成签到,获得积分10
15秒前
16秒前
zhangpeipei完成签到,获得积分10
26秒前
俊逸的盛男完成签到 ,获得积分10
29秒前
科研小菜狗完成签到 ,获得积分10
31秒前
chlgkmoney完成签到 ,获得积分10
32秒前
苗条青槐完成签到 ,获得积分10
35秒前
111111完成签到,获得积分10
36秒前
39秒前
39秒前
Dravia应助科研通管家采纳,获得10
39秒前
欣喜的人龙完成签到 ,获得积分10
42秒前
43秒前
野性的朋友完成签到,获得积分10
50秒前
若杉完成签到 ,获得积分10
51秒前
zxx完成签到 ,获得积分10
52秒前
55秒前
SciGPT应助MAO采纳,获得10
56秒前
wongcong发布了新的文献求助10
1分钟前
欣慰问凝完成签到 ,获得积分10
1分钟前
Wang_JN完成签到 ,获得积分10
1分钟前
郭叠发布了新的文献求助10
1分钟前
哎健身发布了新的文献求助10
1分钟前
Panjiao完成签到 ,获得积分10
1分钟前
1分钟前
Cucumber完成签到,获得积分10
1分钟前
1分钟前
云木完成签到 ,获得积分10
1分钟前
fane完成签到,获得积分10
1分钟前
不去明知山完成签到 ,获得积分10
1分钟前
丘比特应助璟黎采纳,获得10
2分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4111514
求助须知:如何正确求助?哪些是违规求助? 3649823
关于积分的说明 11559616
捐赠科研通 3354925
什么是DOI,文献DOI怎么找? 1843142
邀请新用户注册赠送积分活动 909251
科研通“疑难数据库(出版商)”最低求助积分说明 826061