Exploring novel heat transfer correlations: Machine learning insights for molten salt heat exchangers

传热 热交换器 熔盐 材料科学 热力学 计算机科学 冶金 物理
作者
Seyed Hamed Godasiaei,Ali J. Chamkha
出处
期刊:Numerical Heat Transfer Part A-applications [Taylor & Francis]
卷期号:: 1-18 被引量:7
标识
DOI:10.1080/10407782.2024.2321524
摘要

The utilization of molten salts in heat transfer applications, specifically within shell-and-tube heat exchangers, has garnered significant attention for its potential in sustainable energy solutions. this study employs advanced machine learning algorithms, including decision tree regressor, support vector regressor, extreme gradient boosting, and random forest, to not only predict the heat transfer behavior of molten salts but also unravel the complex mechanisms underlying this process. Achieving a remarkable accuracy score of 0.985, the Support Vector Regressor leads the predictive models, closely followed by random forest (0.982), Decision Tree Regressor (0.974), and Extreme Gradient Boosting (0.965). The incorporation of Shapley Additive exPlanations values accentuates the Reynolds number's pivotal role, elucidating a robust correlation with the Nusselt value. These insights transcend mere prediction, offering a profound understanding that can significantly impact the design and optimization of molten salt heat exchangers. The applications of molten salts extend across various sectors, including concentrated solar energy and thermal storage, solidifying their position as a versatile and effective solution in the pursuit of sustainable and efficient energy systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yao完成签到,获得积分10
1秒前
1秒前
1秒前
yuna完成签到 ,获得积分10
2秒前
GXLong完成签到,获得积分10
2秒前
dsp木偶人完成签到 ,获得积分10
3秒前
娜娜子欧发布了新的文献求助10
3秒前
kingwill应助活泼一凤采纳,获得20
3秒前
可口可乐完成签到,获得积分10
3秒前
4秒前
hahaha发布了新的文献求助10
4秒前
4秒前
嘻嘻完成签到 ,获得积分10
5秒前
FashionBoy应助歪比巴卜采纳,获得10
5秒前
852应助叁叁肆采纳,获得10
6秒前
白日梦与狂想曲完成签到,获得积分10
6秒前
Owen应助脚踏实地i采纳,获得10
8秒前
无奈曼云完成签到,获得积分10
8秒前
多罗罗完成签到,获得积分10
9秒前
二六完成签到,获得积分10
10秒前
糖筱莜完成签到,获得积分10
11秒前
彩虹猫之刃完成签到,获得积分10
11秒前
11秒前
yanjiuhuzu完成签到,获得积分10
11秒前
Ryan完成签到,获得积分10
11秒前
赘婿应助夏添采纳,获得10
12秒前
长隆完成签到 ,获得积分10
12秒前
13秒前
Hello应助w2503采纳,获得10
13秒前
Lcrainy完成签到,获得积分20
13秒前
萩萩完成签到,获得积分10
14秒前
小马甲应助Jean0603采纳,获得25
15秒前
华仔应助intangible采纳,获得10
16秒前
健忘姝完成签到,获得积分10
16秒前
TJ发布了新的文献求助10
16秒前
嘻嘻哈哈完成签到,获得积分10
16秒前
eisa完成签到,获得积分10
16秒前
早点睡觉完成签到,获得积分10
16秒前
Wguan完成签到,获得积分10
17秒前
xiaohanzai88完成签到,获得积分10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792815
求助须知:如何正确求助?哪些是违规求助? 3337271
关于积分的说明 10284330
捐赠科研通 3054023
什么是DOI,文献DOI怎么找? 1675755
邀请新用户注册赠送积分活动 803778
科研通“疑难数据库(出版商)”最低求助积分说明 761534