Graph Contrastive Learning for Clustering of Multi-Layer Networks

计算机科学 判别式 聚类分析 人工智能 图形 特征学习 矩阵分解 非负矩阵分解 模式识别(心理学) 理论计算机科学 机器学习 特征向量 物理 量子力学
作者
Yifei Yang,Xiaoke Ma
出处
期刊:IEEE Transactions on Big Data [IEEE Computer Society]
卷期号:10 (4): 429-441 被引量:5
标识
DOI:10.1109/tbdata.2023.3343349
摘要

Multi-layer networks precisely model complex systems in society and nature with various types of interactions, and identifying conserved modules that are well-connected in all layers is of great significance for revealing their structure-function relationships. Current algorithms are criticized for either ignoring the intrinsic relations among various layers, or failing to learn discriminative features. To attack these limitations, a novel graph contrastive learning framework for clustering of multi-layer networks is proposed by joining nonnegative matrix factorization and graph contrastive learning (called jNMF-GCL), where the intrinsic structure and discriminative of features are simultaneously addressed. Specifically, features of vertices are firstly learned by preserving the conserved structure in multi-layer networks with matrix factorization, and then jNMF-GCL learns an affinity structure of vertices by manipulating features of various layers. To enhance quality of features, contrastive learning is executed by selecting the positive and negative samples from the constructed affinity graph, which significantly improves discriminative of features. Finally, jNMF-GCL incorporates feature learning, construction of affinity graph, contrastive learning and clustering into an overall objective, where global and local structural information are seamlessly fused, providing a more effective way to describe structure of multi-layer networks. Extensive experiments conducted on both artificial and real-world networks have shown the superior performance of jNMF-GCL over state-of-the-art models across various metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等等等等发布了新的文献求助10
1秒前
2秒前
YAOYAO发布了新的文献求助10
2秒前
Jasper应助variant采纳,获得10
2秒前
菜菜来了完成签到,获得积分10
2秒前
懒洋洋tzy发布了新的文献求助10
3秒前
3秒前
默默飞珍完成签到,获得积分10
4秒前
777完成签到,获得积分10
6秒前
7秒前
今后应助Julia采纳,获得10
8秒前
Akim应助小呆鹿采纳,获得30
10秒前
慕青应助哈哈哈采纳,获得10
11秒前
12秒前
懒洋洋tzy完成签到,获得积分20
13秒前
13秒前
Yallabo完成签到,获得积分10
14秒前
16秒前
16秒前
zengyan完成签到 ,获得积分10
17秒前
17秒前
糖果屋发布了新的文献求助10
18秒前
Akim应助行7采纳,获得10
19秒前
星辰大海应助sophie采纳,获得10
20秒前
20秒前
YY应助YAOYAO采纳,获得10
22秒前
晨晨完成签到,获得积分10
22秒前
丽莉发布了新的文献求助10
22秒前
22秒前
张玺完成签到,获得积分20
23秒前
24秒前
25秒前
糖果屋完成签到,获得积分10
26秒前
26秒前
gbx完成签到,获得积分10
28秒前
Julia发布了新的文献求助10
28秒前
lulu完成签到,获得积分10
29秒前
宝玉发布了新的文献求助10
29秒前
Liao发布了新的文献求助10
29秒前
丽莉完成签到,获得积分20
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787319
求助须知:如何正确求助?哪些是违规求助? 3332927
关于积分的说明 10258351
捐赠科研通 3048347
什么是DOI,文献DOI怎么找? 1673093
邀请新用户注册赠送积分活动 801623
科研通“疑难数据库(出版商)”最低求助积分说明 760303