Research on Power Device Fault Prediction of Rod Control Power Cabinet Based on Improved Dung Beetle Optimization–Temporal Convolutional Network Transfer Learning Model

计算机科学 时域 离群值 人工智能 卷积神经网络 断层(地质) 降维 模式识别(心理学) 计算机视觉 地质学 地震学
作者
L. Ye,Zhi Chen,Jie Liu,Lin Chen,Yifan Jian
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:17 (2): 447-447
标识
DOI:10.3390/en17020447
摘要

In order to improve the reliability and maintainability of rod control power cabinets in nuclear power plants, this paper uses insulated gate bipolar transistors (IGBTs), the key power device of rod control power cabinets, as the object of research on cross-working-condition fault prediction. An improved transfer learning (TL) model based on a temporal convolutional network (TCN) is proposed to solve the problem of low fault prediction accuracy across operating conditions. First, the peak emitter voltage of an IGBT aging dataset is selected as the source domain failure characteristic, and the TCN model is trained after the removal of outliers and noise reduction. Then, the time–frequency features are extracted according to the characteristics of the target domain data, and the target domain representation data are obtained using kernel principal component analysis (KPCA) for dimensionality reduction. Finally, the TCN model trained on the source domain is transferred; the model is fine-tuned according to the target domain data, and the learning rate, the number of hidden layer nodes, and the number of training times in the network model are optimized using the dung beetle optimization (DBO) algorithm to obtain the optimal network, making it more suitable for target sample fault prediction. The prediction results of this TCN model, the long short-term memory (LSTM) model, the gated recurrent unit (GRU) model, and the recursive neural network (RNN) model are compared and analyzed by selecting prediction performance evaluation indexes. The results show that the TCN model has a better predictive effect. Comparing the prediction results of the TCN-based optimized transfer learning model with those of the directly trained TCN model, the mean square error, root mean square error, and mean absolute error are reduced by a factor of two to three, which provides an effective solution for fault prediction across operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大成子完成签到,获得积分10
2秒前
科研通AI5应助Keke采纳,获得30
3秒前
科研通AI5应助谦让的花生采纳,获得10
3秒前
歇儿哒哒完成签到,获得积分10
4秒前
张凤发布了新的文献求助10
4秒前
蔡继海发布了新的文献求助10
5秒前
12秒前
12秒前
小飞飞应助陈列采纳,获得10
12秒前
丘比特应助。。采纳,获得10
13秒前
vvv完成签到,获得积分10
13秒前
所所应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
16秒前
勤恳立轩完成签到,获得积分10
16秒前
灰色白面鸮完成签到,获得积分10
16秒前
胡小溪完成签到 ,获得积分10
17秒前
jianglili应助张凤采纳,获得10
19秒前
20秒前
Warming完成签到,获得积分10
22秒前
24秒前
27秒前
。。发布了新的文献求助10
28秒前
shannian完成签到,获得积分10
30秒前
科研通AI2S应助Bin_Liu采纳,获得10
32秒前
Rory完成签到 ,获得积分10
33秒前
Warming发布了新的文献求助10
35秒前
pluto应助淡淡的大雁采纳,获得20
36秒前
36秒前
舒适乐儿完成签到 ,获得积分10
36秒前
39秒前
柔弱的半烟完成签到 ,获得积分10
41秒前
41秒前
金熙美发布了新的文献求助10
46秒前
薛之谦完成签到 ,获得积分10
51秒前
55秒前
发量多的秃子完成签到,获得积分10
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779792
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222123
捐赠科研通 3040419
什么是DOI,文献DOI怎么找? 1668835
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758549