亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Crested Porcupine Optimizer: A new nature-inspired metaheuristic

豪猪 计算机科学 人口 数学优化 差异进化 人工智能 算法 数学 生态学 生物 社会学 人口学
作者
Mohamed Abdel‐Basset,Reda Mohamed,Mohamed Abouhawwash
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:284: 111257-111257 被引量:123
标识
DOI:10.1016/j.knosys.2023.111257
摘要

In this paper, a novel nature-inspired meta-heuristic known as Crested Porcupine Optimizer (CPO) and inspired by various defensive behaviors of crested porcupine (CP) is proposed for accurately optimizing various optimization problems, especially those with large-scale. From least aggressive to most aggressive, the crowned porcupine uses four distinct protective mechanisms: sight, sound, odor, and physical attack. The first and second defensive techniques (sight and sound) reflect the exploratory behavior of CPO, whereas the third and fourth defensive strategies (odor and physical attack) reflect the exploitative behavior of CPO. The proposed algorithm presents a novel strategy called a cyclic population reduction technique to simulate the preposition that not all CPs activate their defense mechanisms, but only those threatened. This strategy promotes the convergence rate and population diversity. CPO was validated using three CEC benchmarks (CEC2014, CEC2017, and CEC2020), and its results were compared to those of three categories of existing optimization algorithms, as follows: (i) the most highly-cited optimizers, including gray wolf optimizer (GWO), whale optimization algorithm (WOA), differential evolution, and salp swarm algorithm (SSA); (ii) recently published algorithms, including gradient-based optimizer (GBO), African vultures optimization algorithm (AVOA), Runge Kutta method (RUN), Equilibrium Optimizer (EO), Artificial Gorilla Troops Optimizer (GTO), and Slime Mold Algorithm (SMA); and (iii) high-performance optimizers, such as SHADE, LSHADE, AL-SHADE, LSHADE-cnEpSin, and LSHADE-SPACMA. The statistical analysis revealed that CPO can be nominated as a high-performance optimizer because it had a significantly superior performance in comparison to all competing optimizers for the majority of the test functions in three validated CEC benchmarks. Quantitively, CPO could achieve an improvement rate over the rival optimizers with a percentage up to 83% for CEC2017, 70% for CEC2017, 90% for CEC2020, and 100% for six real-world engineering problems. The source code of CPO is publicly accessible at https://drive.matlab.com/sharing/24c48ec7-bfd5-4c22-9805-42b7c394c691/
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kw98完成签到 ,获得积分10
1秒前
18秒前
拼搏问薇完成签到 ,获得积分10
20秒前
愉快树叶发布了新的文献求助10
21秒前
44秒前
愉快树叶完成签到,获得积分10
45秒前
晨光完成签到 ,获得积分10
49秒前
50秒前
1分钟前
binyao2024完成签到,获得积分10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
drsherlock应助科研通管家采纳,获得10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
morena应助科研通管家采纳,获得20
1分钟前
顾矜应助FFFFF采纳,获得10
1分钟前
1分钟前
不吃番茄完成签到 ,获得积分10
1分钟前
充电宝应助FFFFF采纳,获得10
1分钟前
1分钟前
酷波er应助123456采纳,获得10
1分钟前
Ava应助科研打工人采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
123456完成签到,获得积分10
1分钟前
123456发布了新的文献求助10
1分钟前
wdnyrrc发布了新的文献求助10
1分钟前
1分钟前
FFFFF发布了新的文献求助10
1分钟前
asdfqaz完成签到,获得积分10
2分钟前
2分钟前
FFFFF发布了新的文献求助10
2分钟前
氢气完成签到 ,获得积分10
2分钟前
2分钟前
FFFFF发布了新的文献求助10
2分钟前
玖月完成签到 ,获得积分10
2分钟前
Ulrica发布了新的文献求助10
2分钟前
2分钟前
FFFFF发布了新的文献求助10
2分钟前
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777580
求助须知:如何正确求助?哪些是违规求助? 3322969
关于积分的说明 10212647
捐赠科研通 3038289
什么是DOI,文献DOI怎么找? 1667276
邀请新用户注册赠送积分活动 798073
科研通“疑难数据库(出版商)”最低求助积分说明 758215