Crested Porcupine Optimizer: A new nature-inspired metaheuristic

豪猪 计算机科学 人口 数学优化 差异进化 人工智能 算法 数学 生态学 生物 社会学 人口学
作者
Mohamed Abdel‐Basset,Reda Mohamed,Mohamed Abouhawwash
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:284: 111257-111257 被引量:369
标识
DOI:10.1016/j.knosys.2023.111257
摘要

In this paper, a novel nature-inspired meta-heuristic known as Crested Porcupine Optimizer (CPO) and inspired by various defensive behaviors of crested porcupine (CP) is proposed for accurately optimizing various optimization problems, especially those with large-scale. From least aggressive to most aggressive, the crowned porcupine uses four distinct protective mechanisms: sight, sound, odor, and physical attack. The first and second defensive techniques (sight and sound) reflect the exploratory behavior of CPO, whereas the third and fourth defensive strategies (odor and physical attack) reflect the exploitative behavior of CPO. The proposed algorithm presents a novel strategy called a cyclic population reduction technique to simulate the preposition that not all CPs activate their defense mechanisms, but only those threatened. This strategy promotes the convergence rate and population diversity. CPO was validated using three CEC benchmarks (CEC2014, CEC2017, and CEC2020), and its results were compared to those of three categories of existing optimization algorithms, as follows: (i) the most highly-cited optimizers, including gray wolf optimizer (GWO), whale optimization algorithm (WOA), differential evolution, and salp swarm algorithm (SSA); (ii) recently published algorithms, including gradient-based optimizer (GBO), African vultures optimization algorithm (AVOA), Runge Kutta method (RUN), Equilibrium Optimizer (EO), Artificial Gorilla Troops Optimizer (GTO), and Slime Mold Algorithm (SMA); and (iii) high-performance optimizers, such as SHADE, LSHADE, AL-SHADE, LSHADE-cnEpSin, and LSHADE-SPACMA. The statistical analysis revealed that CPO can be nominated as a high-performance optimizer because it had a significantly superior performance in comparison to all competing optimizers for the majority of the test functions in three validated CEC benchmarks. Quantitively, CPO could achieve an improvement rate over the rival optimizers with a percentage up to 83% for CEC2017, 70% for CEC2017, 90% for CEC2020, and 100% for six real-world engineering problems. The source code of CPO is publicly accessible at https://drive.matlab.com/sharing/24c48ec7-bfd5-4c22-9805-42b7c394c691/
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cc完成签到,获得积分10
1秒前
2秒前
liuker完成签到 ,获得积分10
3秒前
wang发布了新的文献求助10
3秒前
圆润润呐发布了新的文献求助10
6秒前
李昕123发布了新的文献求助10
7秒前
冷酷严青发布了新的文献求助10
7秒前
caocao发布了新的文献求助10
7秒前
郝雨竹郝雨竹完成签到 ,获得积分10
7秒前
浮游应助浮浮世世采纳,获得10
8秒前
黑咖啡完成签到,获得积分10
8秒前
8秒前
旺旺完成签到,获得积分10
9秒前
10秒前
科研通AI6应助小姜采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
不安的芫完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
共享精神应助阿洁采纳,获得10
13秒前
yujia发布了新的文献求助10
13秒前
14秒前
WJ发布了新的文献求助10
14秒前
luuuuuing完成签到,获得积分10
14秒前
wang完成签到,获得积分10
15秒前
15秒前
崽崽纯发布了新的文献求助10
15秒前
李lll发布了新的文献求助10
17秒前
hlll完成签到 ,获得积分10
18秒前
19秒前
momo13完成签到 ,获得积分10
19秒前
20秒前
20秒前
勤劳翰发布了新的文献求助10
20秒前
21秒前
WJ完成签到,获得积分20
21秒前
gigi完成签到,获得积分10
22秒前
李lll完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553089
求助须知:如何正确求助?哪些是违规求助? 4637664
关于积分的说明 14650570
捐赠科研通 4579522
什么是DOI,文献DOI怎么找? 2511683
邀请新用户注册赠送积分活动 1486615
关于科研通互助平台的介绍 1457617