Crested Porcupine Optimizer: A new nature-inspired metaheuristic

豪猪 计算机科学 人口 数学优化 差异进化 人工智能 算法 数学 生态学 生物 社会学 人口学
作者
Mohamed Abdel‐Basset,Reda Mohamed,Mohamed Abouhawwash
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:284: 111257-111257 被引量:189
标识
DOI:10.1016/j.knosys.2023.111257
摘要

In this paper, a novel nature-inspired meta-heuristic known as Crested Porcupine Optimizer (CPO) and inspired by various defensive behaviors of crested porcupine (CP) is proposed for accurately optimizing various optimization problems, especially those with large-scale. From least aggressive to most aggressive, the crowned porcupine uses four distinct protective mechanisms: sight, sound, odor, and physical attack. The first and second defensive techniques (sight and sound) reflect the exploratory behavior of CPO, whereas the third and fourth defensive strategies (odor and physical attack) reflect the exploitative behavior of CPO. The proposed algorithm presents a novel strategy called a cyclic population reduction technique to simulate the preposition that not all CPs activate their defense mechanisms, but only those threatened. This strategy promotes the convergence rate and population diversity. CPO was validated using three CEC benchmarks (CEC2014, CEC2017, and CEC2020), and its results were compared to those of three categories of existing optimization algorithms, as follows: (i) the most highly-cited optimizers, including gray wolf optimizer (GWO), whale optimization algorithm (WOA), differential evolution, and salp swarm algorithm (SSA); (ii) recently published algorithms, including gradient-based optimizer (GBO), African vultures optimization algorithm (AVOA), Runge Kutta method (RUN), Equilibrium Optimizer (EO), Artificial Gorilla Troops Optimizer (GTO), and Slime Mold Algorithm (SMA); and (iii) high-performance optimizers, such as SHADE, LSHADE, AL-SHADE, LSHADE-cnEpSin, and LSHADE-SPACMA. The statistical analysis revealed that CPO can be nominated as a high-performance optimizer because it had a significantly superior performance in comparison to all competing optimizers for the majority of the test functions in three validated CEC benchmarks. Quantitively, CPO could achieve an improvement rate over the rival optimizers with a percentage up to 83% for CEC2017, 70% for CEC2017, 90% for CEC2020, and 100% for six real-world engineering problems. The source code of CPO is publicly accessible at https://drive.matlab.com/sharing/24c48ec7-bfd5-4c22-9805-42b7c394c691/
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
慧慧完成签到,获得积分20
4秒前
耍酷的剑身应助Tonald Yang采纳,获得10
5秒前
古炮发布了新的文献求助10
5秒前
5秒前
cloud完成签到,获得积分10
5秒前
倾听阳光完成签到 ,获得积分10
6秒前
7秒前
慧慧发布了新的文献求助10
9秒前
Sunny完成签到,获得积分10
9秒前
Jing完成签到 ,获得积分10
9秒前
ning_qing完成签到 ,获得积分10
10秒前
10秒前
纸条条完成签到 ,获得积分10
11秒前
霸气秀发布了新的文献求助10
12秒前
neverever完成签到,获得积分10
13秒前
碎冰蓝完成签到,获得积分10
13秒前
一米阳光发布了新的文献求助10
14秒前
crave完成签到 ,获得积分10
17秒前
早睡早起完成签到 ,获得积分10
17秒前
GLORIA完成签到,获得积分20
18秒前
量子星尘发布了新的文献求助10
20秒前
QS完成签到,获得积分10
20秒前
20秒前
lz完成签到,获得积分10
21秒前
tong童完成签到 ,获得积分10
22秒前
阿兹卡班长完成签到 ,获得积分10
24秒前
Karma应助jinyu采纳,获得10
24秒前
lililili完成签到,获得积分10
25秒前
yyy完成签到 ,获得积分10
25秒前
烟花应助文献来来来采纳,获得10
25秒前
mama完成签到 ,获得积分10
25秒前
Zurlliant完成签到,获得积分10
27秒前
黄橙子完成签到 ,获得积分10
27秒前
SDNUDRUG完成签到,获得积分10
29秒前
天明完成签到,获得积分10
30秒前
QQLL完成签到,获得积分10
33秒前
33秒前
35秒前
raibow9814完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4280743
求助须知:如何正确求助?哪些是违规求助? 3808658
关于积分的说明 11929641
捐赠科研通 3455893
什么是DOI,文献DOI怎么找? 1895244
邀请新用户注册赠送积分活动 944496
科研通“疑难数据库(出版商)”最低求助积分说明 848291