已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning for EEG‐Based Alzheimer’s Disease Diagnosis

概化理论 脑电图 计算机科学 人工智能 深度学习 二元分类 机器学习 模式识别(心理学) 心理学 支持向量机 神经科学 发展心理学
作者
Xiang Zhang,Yihe Wang,Payal Chandak,Zihuai He
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:19 (S15) 被引量:2
标识
DOI:10.1002/alz.071575
摘要

Abstract Background Electroencephalography (EEG) could be a powerful tool to diagnose Alzheimer’s Disease (AD) because it is pervasive, non‐invasive, and cost‐effective [1]. However, EEG‐based AD detection has suffered from poor performance and low generalizability due to the noisy nature of the signal and high inter‐patient variability. Here, we show that emerging deep learning techniques can alleviate these challenges and pave the way for the clinical use of EEG in AD detection. Method We formulate the problem of EEG‐based AD detection as a binary classification task. We propose an end‐to‐end deep neural network that utilizes contrastive representation learning to automatically learn low‐dimensional features from EEG trials. These features are then fed into a non‐linear classifier that predicts the probability of AD. Result We evaluated the model on a public dataset comprising 23 subjects (12 AD; 11 control) that have 663 trials in total [2]. (1) Patient‐dependent setup. In line with existing work in EEG‐based AD detection, we randomly assigned 80% of trials for training and the remaining 20% for tests, where the same patient could have trials in both groups. Our model achieved an F1 score of 99.35% which is competitive with, if not superior to, the state‐of‐the‐art baselines. (2) Patient‐independent setup. We then investigate a more challenging setup, where trials from a particular patient were assigned either to training (19 subjects) or to testing (4 subjects). The deep learning system is evaluated on patients it has not encountered before. Our model attains an F1 score of 86.45%, outperforming baselines by a significant margin (>20%). Conclusion Our results demonstrate that our deep learning model significantly improves the accuracy of EEG‐based AD diagnosis. In particular, our model sets the state‐of‐the‐art performance in the patient‐independent evaluation. This suggests that our model can learn a distinctive pattern of AD from a small group of subjects and apply it to unseen individuals: which is indispensable for real‐world deployment. [1] Tait, X. et al. Eeg Microstate Complexity for Aiding Early Diagnosis of Alzheimer’s Disease. Scientific Reports, 2020. [2] K. Smith, et al. Accounting for the Complex Hierarchical Topology of Eeg Phase‐Based Functional Connectivity in Network Binarisation. PloS One, 2017.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉的青烟完成签到 ,获得积分10
1秒前
儒雅致远发布了新的文献求助10
2秒前
LiuZheng发布了新的文献求助10
4秒前
4秒前
Criminology34应助Hayat采纳,获得30
6秒前
大模型应助咖啡不加糖采纳,获得10
6秒前
xhkxz完成签到,获得积分10
7秒前
8秒前
10秒前
Miracle_wh完成签到 ,获得积分10
10秒前
CipherSage应助儒雅致远采纳,获得10
10秒前
klyang应助gar采纳,获得30
14秒前
Lucas发布了新的文献求助10
16秒前
19秒前
20秒前
21秒前
21秒前
21秒前
科目三应助666采纳,获得10
23秒前
23秒前
Mottri发布了新的文献求助10
26秒前
26秒前
小刘哥儿发布了新的文献求助10
26秒前
Lavender发布了新的文献求助10
28秒前
29秒前
30秒前
Lucas应助英俊的凡梅采纳,获得10
32秒前
Zhang完成签到 ,获得积分10
33秒前
34秒前
34秒前
35秒前
奋斗永不停止完成签到 ,获得积分10
35秒前
刘露发布了新的文献求助10
35秒前
上山打老虎完成签到 ,获得积分10
36秒前
37秒前
红娘发布了新的文献求助10
37秒前
香蕉觅云应助陈陈要毕业采纳,获得30
38秒前
黎明森发布了新的文献求助10
38秒前
科研通AI6应助happy采纳,获得10
38秒前
袁十三发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312489
求助须知:如何正确求助?哪些是违规求助? 4456148
关于积分的说明 13865749
捐赠科研通 4344664
什么是DOI,文献DOI怎么找? 2386013
邀请新用户注册赠送积分活动 1380317
关于科研通互助平台的介绍 1348719