Development of early prediction model of in-hospital cardiac arrest based on laboratory parameters

医学 机器学习 逻辑回归 部分凝血活酶时间 凝血酶原时间 决策树 人工智能 内科学 急诊医学 血小板 计算机科学
作者
Xinhuan Ding,Yingchan Wang,Wenfeng Ma,Yaojun Peng,Jingjing Huang,Meng Wang,Haiyan Zhu
出处
期刊:Biomedical Engineering Online [BioMed Central]
卷期号:22 (1)
标识
DOI:10.1186/s12938-023-01178-9
摘要

In-hospital cardiac arrest (IHCA) is an acute disease with a high fatality rate that burdens individuals, society, and the economy. This study aimed to develop a machine learning (ML) model using routine laboratory parameters to predict the risk of IHCA in rescue-treated patients.This retrospective cohort study examined all rescue-treated patients hospitalized at the First Medical Center of the PLA General Hospital in Beijing, China, from January 2016 to December 2020. Five machine learning algorithms, including support vector machine, random forest, extra trees classifier (ETC), decision tree, and logistic regression algorithms, were trained to develop models for predicting IHCA. We included blood counts, biochemical markers, and coagulation markers in the model development. We validated model performance using fivefold cross-validation and used the SHapley Additive exPlanation (SHAP) for model interpretation.A total of 11,308 participants were included in the study, of which 7779 patients remained. Among these patients, 1796 (23.09%) cases of IHCA occurred. Among five machine learning models for predicting IHCA, the ETC algorithm exhibited better performance, with an AUC of 0.920, compared with the other four machine learning models in the fivefold cross-validation. The SHAP showed that the top ten factors accounting for cardiac arrest in rescue-treated patients are prothrombin activity, platelets, hemoglobin, N-terminal pro-brain natriuretic peptide, neutrophils, prothrombin time, serum albumin, sodium, activated partial thromboplastin time, and potassium.We developed a reliable machine learning-derived model that integrates readily available laboratory parameters to predict IHCA in patients treated with rescue therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风陌子若发布了新的文献求助10
刚刚
七一安完成签到 ,获得积分10
刚刚
1秒前
秋秋完成签到,获得积分10
1秒前
顾矜应助科研通管家采纳,获得10
2秒前
wyw123完成签到,获得积分10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
HEIKU应助科研通管家采纳,获得10
2秒前
Sevi完成签到,获得积分10
2秒前
HEIKU应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
HEIKU应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
3秒前
puzhongjiMiQ发布了新的文献求助10
3秒前
yy完成签到 ,获得积分10
3秒前
4秒前
4秒前
hkh发布了新的文献求助10
4秒前
果实完成签到,获得积分10
5秒前
5秒前
无尘泪完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
8秒前
宁静致远QY完成签到,获得积分10
8秒前
充电宝应助杨惠文采纳,获得10
8秒前
puzhongjiMiQ发布了新的文献求助10
9秒前
puzhongjiMiQ发布了新的文献求助10
9秒前
puzhongjiMiQ发布了新的文献求助10
9秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843340
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541427
捐赠科研通 3106276
什么是DOI,文献DOI怎么找? 1710911
邀请新用户注册赠送积分活动 823851
科研通“疑难数据库(出版商)”最低求助积分说明 774313