Fault diagnosis of rotating machinery using novel self-attention mechanism TCN with soft thresholding method

计算机科学 阈值 断层(地质) 人工智能 机制(生物学) 算法 算术 数学 物理 量子力学 地震学 地质学 图像(数学)
作者
Li Ding,Qing Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (4): 047001-047001 被引量:13
标识
DOI:10.1088/1361-6501/ad1eb3
摘要

Abstract Rotating machinery (e.g. rolling bearings and gearboxes) is usually operated in high-risk and vulnerable environments such as time-varying loads and poor lubrication. Timely assessment of the operational status of rotating machinery is crucial to prevent damage caused by potential failure and shutdown, which significantly enhances the reliability of mechanical systems, prolongs the service life of critical components in rotating machinery, and minimizes unnecessary maintenance costs. In this regard, in this paper, a novel approach named self-attention mechanism combining time convolutional network with soft thresholding algorithm (SAM-TCN-ST) is proposed for fault intelligent recognition of rotating machinery. Specifically, the vibration signals are transformed into time-frequency graphs with distinct features utilizing the continuous wavelet transform, and then the proposed SAM-TCN-ST algorithm is employed for capturing essential data characteristics and classification performance. Eventually, datasets from rolling bearings and gearboxes are used to verify the accuracy and effectiveness of the proposed method compared with state-of-the-art benchmark networks such as pure TCN, convolutional neural networks and long short-term memory models. Experimental results demonstrate that the recognition accuracy rate of the proposed SAM-TCN-ST is higher than that obtained from the benchmark methods. This research presents an intelligent and viable solution for achieving real-time monitoring of the status and detecting faults in rotating machinery, thereby expectedly enhancing the reliability of mechanical systems. Consequently, the proposed SAM-TCN-ST algorithm holds significant potential for applications in prognostic and health management practices related to rotating machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
ruan完成签到,获得积分10
3秒前
MDHuang完成签到,获得积分10
3秒前
谨慎寻芹发布了新的文献求助10
5秒前
zhang发布了新的文献求助10
5秒前
5秒前
冯春妮完成签到,获得积分20
5秒前
MMMV发布了新的文献求助10
5秒前
kikokiki发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助150
6秒前
6秒前
6秒前
Kate发布了新的文献求助10
7秒前
和光同尘发布了新的文献求助10
7秒前
典雅雁梅完成签到,获得积分10
7秒前
微眠发布了新的文献求助10
8秒前
10秒前
浮游应助FSY采纳,获得10
10秒前
orixero应助爱听歌沉鱼采纳,获得10
10秒前
张志恒完成签到,获得积分10
10秒前
dan完成签到 ,获得积分10
12秒前
13秒前
13秒前
huanhuan完成签到,获得积分10
13秒前
15秒前
15秒前
15秒前
积极达发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助30
17秒前
ding应助zhang采纳,获得10
17秒前
luu发布了新的文献求助30
17秒前
科研通AI5应助XiYang采纳,获得10
18秒前
18秒前
称心的书双完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
Like发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074163
求助须知:如何正确求助?哪些是违规求助? 4294315
关于积分的说明 13380837
捐赠科研通 4115699
什么是DOI,文献DOI怎么找? 2253823
邀请新用户注册赠送积分活动 1258466
关于科研通互助平台的介绍 1191322