A Dense-Sparse Complementary Network for Human Action Recognition based on RGB and Skeleton Modalities

计算机科学 RGB颜色模型 人工智能 计算机视觉 卷积神经网络 杠杆(统计) 深度学习 模式识别(心理学)
作者
Cheng Qin,Jun Cheng,Zhen Liu,Ziliang Ren,Jianming Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:244: 123061-123061 被引量:4
标识
DOI:10.1016/j.eswa.2023.123061
摘要

The vulnerability of RGB-based human action recognition in complex environment and variational scenes can be compensated by skeleton modality. Therefore, action recognition methods fusing RGB and skeleton modalities have received increasing attention. However, the recognition performance of the existing methods is still not satisfactory due to the insufficiently optimized sampling, modeling and fusion strategy, even the computational cost is heavy. In this paper, we propose a Dense-Sparse Complementary Network (DSCNet), which aims to leverage the complementary information of the RGB and skeleton modalities at light computational cost to obtain the competitive action recognition performance. Specifically, we first adopt dense and sparse sampling strategies according to the advantages of RGB and skeleton modalities, respectively. And then, we use the skeleton as guiding information to crop the key active region of the persons in the RGB frame, which largely eliminates the interference of the background. Moreover, a Short-Term Motion Extraction Module (STMEM) is proposed to compress the densely sampled RGB frames to fewer frames before feeding them into the backbone network, which avoids a surge in computational cost. And a Sparse Multi-Scale Spatial–Temporal convolutional neural Network (Sparse-MSSTNet) is designed to modeling sparse skeleton. Extensive experiments show that our method effectively combines complementary information of RGB and skeleton modalities to improve recognition accuracy. The DSCNet achieves competitive performance on NTU RGB+D 60, NTU RGB+D 120, PKU-MMD, UAV-human, IKEA ASM and Northwest-UCLA datasets with much less computational cost than exiting methods. The code is available at https://github.com/Maxchengqin/DSCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lisa完成签到,获得积分10
3秒前
XIA完成签到 ,获得积分10
6秒前
9秒前
10秒前
星辰大海应助CY采纳,获得10
11秒前
张涛发布了新的文献求助10
13秒前
动漫大师发布了新的文献求助10
13秒前
15秒前
科研小谢完成签到,获得积分10
16秒前
brian0326完成签到,获得积分10
16秒前
18秒前
19秒前
Yang完成签到 ,获得积分10
20秒前
QingMRI发布了新的文献求助10
20秒前
岩岫清风发布了新的文献求助10
23秒前
结实雪晴发布了新的文献求助10
23秒前
24秒前
2220完成签到 ,获得积分10
24秒前
HOME发布了新的文献求助10
24秒前
鱼咬羊发布了新的文献求助200
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
27秒前
科目三应助科研通管家采纳,获得10
27秒前
27秒前
30秒前
30秒前
33秒前
34秒前
小天发布了新的文献求助10
37秒前
Ander完成签到 ,获得积分10
37秒前
Wang完成签到,获得积分10
39秒前
HOME完成签到,获得积分20
42秒前
44秒前
贰鸟完成签到,获得积分0
45秒前
辣目童子完成签到 ,获得积分10
45秒前
46秒前
47秒前
沐风发布了新的文献求助10
47秒前
51秒前
张涛完成签到,获得积分20
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323510
关于积分的说明 10214659
捐赠科研通 3038693
什么是DOI,文献DOI怎么找? 1667611
邀请新用户注册赠送积分活动 798220
科研通“疑难数据库(出版商)”最低求助积分说明 758315