Improving the electrochemical performance of Li-rich manganese-based cathode materials by surface treatment with triethylamine

电化学 阴极 容量损失 材料科学 三乙胺 电流密度 化学工程 比表面积 锂(药物) 无机化学 化学 电极 催化作用 冶金 物理化学 有机化学 内分泌学 工程类 物理 医学 量子力学
作者
Ao Li,Binfang He,Guangchao Jin,Dongmei Liu,Jingbo Chen
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:976: 172951-172951 被引量:4
标识
DOI:10.1016/j.jallcom.2023.172951
摘要

Li-rich manganese-based cathode material is expected to be extremely promising for next-generation lithium-ion batteries due to its high specific capacity derived from additional anion redox behavior and low cost of the main element manganese. However, the irreversible release of lattice oxygen results in poor structural stability and inferior electrochemical performances, such as low initial Coulomb efficiency, irreversible capacity decay and serious voltage decay, which limits its commercialization. Herein, a simple strategy to improve the structural stability and electrochemical performances by one-step treatment with triethylamine (TEA) at moderate temperature is reported. TEA was used as a surface treatment reagent to prepare the modified Li-rich manganese-based cathode materials with oxygen vacancies and local structural distortion on the surface. The presence of surface distortion layer and oxygen vacancies inhibits irreversible oxygen release. The result exhibits that initial Coulomb efficiency, rate performance and initial discharge specific capacities are improved. After 100 cycles at a current density of 1 C, the specific capacity of the surface-treated material is 204.3 mAh g-1 (172.6 mAh g-1 for the pristine material), with a capacity retention of 81.26%. Even at a high current density of 10 C, the discharge specific capacity of 139.4 mAh g-1 is still achieved, demonstrating the excellent electrochemical performance. This study provides a simple and effective strategy for constructing special surface structures on Li-rich manganese-based materials to achieve high performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助AUV采纳,获得10
1秒前
tdtk发布了新的文献求助10
1秒前
rita发布了新的文献求助10
2秒前
无花果应助YuJiao采纳,获得10
2秒前
隐形曼青应助mkb采纳,获得10
2秒前
木子发布了新的文献求助30
2秒前
2秒前
CodeCraft应助Lee采纳,获得10
3秒前
3秒前
3秒前
4秒前
赘婿应助wyc采纳,获得10
4秒前
4秒前
xiaohu6311发布了新的文献求助10
4秒前
5秒前
NOBODY发布了新的文献求助10
5秒前
superspace发布了新的文献求助30
5秒前
隐形冷亦发布了新的文献求助10
5秒前
5秒前
Bai_shao完成签到,获得积分10
6秒前
登登完成签到,获得积分10
7秒前
geold发布了新的文献求助10
7秒前
酷炫寄真发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
李健应助木子采纳,获得10
7秒前
666发布了新的文献求助10
8秒前
半山完成签到 ,获得积分10
8秒前
9秒前
Asteria发布了新的文献求助10
10秒前
悦耳听芹发布了新的文献求助10
10秒前
LLL发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
LZQ关注了科研通微信公众号
11秒前
张星星完成签到 ,获得积分10
11秒前
12秒前
12秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4058084
求助须知:如何正确求助?哪些是违规求助? 3596232
关于积分的说明 11425745
捐赠科研通 3321495
什么是DOI,文献DOI怎么找? 1826378
邀请新用户注册赠送积分活动 897114
科研通“疑难数据库(出版商)”最低求助积分说明 818269