亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Variable linear transformation improved physics-informed neural networks to solve thin-layer flow problems

规范化(社会学) 人工神经网络 计算机科学 缩放比例 应用数学 变量(数学) 反向 统计物理学 数学 数学优化 人工智能 物理 数学分析 几何学 人类学 社会学
作者
Jiahao Wu,Yuxin Wu,Guihua Zhang,Yang Zhang
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:500: 112761-112761 被引量:19
标识
DOI:10.1016/j.jcp.2024.112761
摘要

Physics-informed neural networks (PINNs) have attracted wide attention due to their ability to seamlessly embed the learning process with physical laws and their considerable success in solving forward and inverse differential equation (DE) problems. While most studies are improving the learning process and network architecture of PINNs, less attention has been paid to the modification of the DE system, which may play an important role in addressing some limitations of PINNs. One of the simplest modifications that can be implemented to all DE systems is the variable linear transformation (VLT). Therefore, in this work, we propose the VLT-PINNs that solve the DE systems of the linear-transformed variables instead of the original ones. To clearly illustrate the importance of prior knowledge in determining the VLT parameters, we choose the thin-layer flow problems as our focus. Ten related cases were tested, including the jet flows, wake flows, mixing layers, boundary layers and Kovasznay flows. Based on the principle of normalization and for a better match of the DE system to the preference of NNs, we identify three principles for determining the VLT parameters: magnitude normalization for dependent variables (principle 1), local normalization for independent variables (principle 2), and appropriate scaling for physics-related parameters in inverse problems (principle 3). The VLT-PINNs with the VLT parameters suggested by the proposed principles show excellent performance over all the test cases, while the results are quite poor with the VLT parameters suggested by traditional linear transformations, such as nondimensionalization and global normalization. Comparison studies also show that only under the constraints of the VLT principles can we obtain satisfactory results. Besides, we find tanh is more appropriate as the activation function than sin for thin-layer flow problems, from both posteriori results and priori analyses with physical intuition. We highlight that our VLT method is an attempt to combine the three advantages of accuracy, universality and simplicity, and hope that it can provide new insights into the better integration of prior knowledge, physical intuition and the nature of NNs. The code for this paper is available on https://github.com/CAME-THU/VLT-PINN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
小白菜完成签到,获得积分20
13秒前
15秒前
执着艳完成签到 ,获得积分10
15秒前
Leofar完成签到 ,获得积分10
16秒前
21秒前
21秒前
风趣的小夏完成签到 ,获得积分10
22秒前
kk发布了新的文献求助10
25秒前
25秒前
histamin完成签到,获得积分10
26秒前
czyzyzy完成签到,获得积分10
26秒前
小白菜发布了新的文献求助10
27秒前
28秒前
白潇潇完成签到 ,获得积分10
29秒前
33秒前
33秒前
33秒前
念一完成签到,获得积分20
35秒前
深情安青应助旺旺雪饼采纳,获得10
36秒前
香蕉觅云应助kk采纳,获得10
37秒前
小仙女完成签到 ,获得积分10
37秒前
38秒前
桐桐应助念一采纳,获得10
40秒前
keke完成签到,获得积分10
42秒前
42秒前
43秒前
43秒前
summer不吃蛋黄完成签到 ,获得积分10
45秒前
共享精神应助ceeray23采纳,获得20
47秒前
liutong完成签到 ,获得积分10
48秒前
双目识林完成签到 ,获得积分10
49秒前
Mike发布了新的文献求助10
50秒前
人九完成签到 ,获得积分10
52秒前
53秒前
研友_VZG7GZ应助VX采纳,获得10
55秒前
57秒前
AIA7发布了新的文献求助10
1分钟前
绾妤完成签到 ,获得积分0
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731585
求助须知:如何正确求助?哪些是违规求助? 5331174
关于积分的说明 15321204
捐赠科研通 4877543
什么是DOI,文献DOI怎么找? 2620392
邀请新用户注册赠送积分活动 1569649
关于科研通互助平台的介绍 1526191