Predicting Sandstone Brittleness under Varying Water Conditions Using Infrared Radiation and Computational Techniques

脆性 指数函数 索引(排版) 线性回归 相关系数 线性相关 压力(语言学) 红外线的 材料科学 岩土工程 地质学 计算机科学 复合材料 数学 统计 物理 光学 哲学 语言学 数学分析 万维网
作者
Naseer Muhammad Khan,Liqiang Ma,Muhammad Zaka Emad,Tariq Feroze,Qiangqiang Gao,Saad S. Alarifi,Li Sun,Sajjad Hussain,Hui Wang
出处
期刊:Water [MDPI AG]
卷期号:16 (1): 143-143 被引量:6
标识
DOI:10.3390/w16010143
摘要

The brittleness index is one of the most integral parameters used in assessing rock bursts and catastrophic rock failures resulting from deep underground mining activities. Accurately predicting this parameter is crucial for effectively monitoring rock bursts, which can cause damage to miners and lead to the catastrophic failure of engineering structures. Therefore, developing a new brittleness index capable of effectively predicting rock bursts is essential for the safe and efficient execution of engineering projects. In this research study, a novel mathematical rock brittleness index is developed, utilizing factors such as crack initiation, crack damage, and peak stress for sandstones with varying water contents. Additionally, the brittleness index is compared with previous important brittleness indices (e.g., B1, B2, B3, and B4) predicted using infrared radiation (IR) characteristics, specifically the variance of infrared radiation temperature (VIRT), along with various artificial intelligent (AI) techniques such as k-nearest neighbor (KNN), extreme gradient boost (XGBoost), and random forest (RF), providing comprehensive insights for predicting rock bursts. The experimental and AI results revealed that: (1) crack initiation, elastic modulus, crack damage, and peak stress decrease with an increase in water content; (2) the brittleness indices such as B1, B3, and B4 show a positive linear exponential correlation, having a coefficient of determination of R2 = 0.88, while B2 shows a negative linear exponential correlation (R2 = 0.82) with water content. Furthermore, the proposed brittleness index shows a good linear correlation with B1, B3, and B4, with an R2 > 0.85, while it shows a poor negative linear correlation with B2, with an R2 = 0.61; (3) the RF model, developed for predicting the brittleness index, demonstrates superior performance when compared to other models, as indicated by the following performance parameters: R2 = 0.999, root mean square error (RMSE) = 0.383, mean square error (MSE) = 0.007, and mean absolute error (MAE) = 0.002. Consequently, RF stands as being recommended for accurate rock brittleness prediction. These research findings offer valuable insights and guidelines for effectively developing a brittleness index to assess the rock burst risks associated with rock engineering projects under water conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清新的易真完成签到,获得积分10
刚刚
刚刚
哒哒完成签到,获得积分10
刚刚
是述不是沭完成签到,获得积分0
刚刚
哦耶发布了新的文献求助10
1秒前
领导范儿应助无情的宛儿采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
sll发布了新的文献求助30
2秒前
lxy发布了新的文献求助10
2秒前
大模型应助郭效辰采纳,获得10
2秒前
赘婿应助欢喜柚子采纳,获得10
3秒前
pannalLL完成签到,获得积分20
4秒前
6秒前
爱科研的罗罗完成签到,获得积分10
6秒前
潼潼发布了新的文献求助20
7秒前
7秒前
Stella应助pannalLL采纳,获得10
7秒前
Pweni完成签到,获得积分10
8秒前
大个应助October采纳,获得10
10秒前
NexusExplorer应助ccc采纳,获得10
10秒前
完美世界应助满意妙梦采纳,获得10
11秒前
12秒前
完美世界应助晨屿采纳,获得10
13秒前
bing完成签到,获得积分10
13秒前
山河发布了新的文献求助10
14秒前
无花果应助科研通管家采纳,获得10
15秒前
mmyhn应助科研通管家采纳,获得10
15秒前
中和皇极应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
mmyhn应助科研通管家采纳,获得20
15秒前
dd发布了新的文献求助10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
中和皇极应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得30
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599199
求助须知:如何正确求助?哪些是违规求助? 4684749
关于积分的说明 14836100
捐赠科研通 4666825
什么是DOI,文献DOI怎么找? 2537800
邀请新用户注册赠送积分活动 1505241
关于科研通互助平台的介绍 1470764