AEGNN-M:A 3D Graph-Spatial Co-Representation Model for Molecular Property Prediction

可解释性 分子图 计算机科学 代表(政治) 图形 空间分析 理论计算机科学 机器学习 人工智能 模式识别(心理学) 数据挖掘 数学 政治 政治学 法学 统计
作者
Lijun Cai,Yongchang He,Xiangzheng Fu,Linlin Zhuo,Quan Zou,Xiaojun Yao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9 被引量:6
标识
DOI:10.1109/jbhi.2024.3368608
摘要

Improving the drug development process can expedite the introduction of more novel drugs that cater to the demands of precision medicine. Accurately predicting molecular properties remains a fundamental challenge in drug discovery and development. Currently, a plethora of computer-aided drug discovery (CADD) methods have been widely employed in the field of molecular prediction. However, most of these methods primarily analyze molecules using low-dimensional representations such as SMILES notations, molecular fingerprints, and molecular graph-based descriptors. Only a few approaches have focused on incorporating and utilizing high-dimensional spatial structural representations of molecules. In light of the advancements in artificial intelligence, we introduce a 3D graph-spatial co-representation model called AEGNN-M, which combines two graph neural networks, GAT and EGNN. AEGNN-M enables learning of information from both molecular graphs representations and 3D spatial structural representations to predict molecular properties accurately. We conducted experiments on seven public datasets, three regression datasets and 14 breast cancer cell line phenotype screening datasets, comparing the performance of AEGNN-M with state-of-the-art deep learning methods. Extensive experimental results demonstrate the satisfactory performance of the AEGNN-M model. Furthermore, we analyzed the performance impact of different modules within AEGNN-M and the influence of spatial structural representations on the model's performance. The interpretability analysis also revealed the significance of specific atoms in determining particular molecular properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助wangxiu采纳,获得10
刚刚
xiaomaxia发布了新的文献求助10
1秒前
小莫发布了新的文献求助10
1秒前
cuihao完成签到,获得积分10
1秒前
徐凯俊完成签到,获得积分10
3秒前
火星上的孤风完成签到,获得积分10
3秒前
lameliu完成签到,获得积分10
3秒前
lsw发布了新的文献求助10
4秒前
Andrew完成签到,获得积分10
6秒前
小鱼完成签到,获得积分10
8秒前
赘婿应助科研通管家采纳,获得10
11秒前
coolkid应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
coolkid应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得30
11秒前
11秒前
搜集达人应助科研通管家采纳,获得30
11秒前
coolkid应助科研通管家采纳,获得10
12秒前
小宋应助科研通管家采纳,获得10
12秒前
852应助火山采纳,获得10
12秒前
啊怪完成签到 ,获得积分10
13秒前
自然千山完成签到,获得积分10
14秒前
传奇3应助诶飞飞飞飞采纳,获得10
15秒前
Orange应助xiaomaxia采纳,获得10
16秒前
16秒前
16秒前
chenxin完成签到,获得积分10
16秒前
lsw完成签到,获得积分10
19秒前
深情安青应助Ting222采纳,获得10
19秒前
19秒前
儒雅的不愁完成签到 ,获得积分10
21秒前
冬眠发布了新的文献求助10
22秒前
24秒前
科研狗完成签到,获得积分10
25秒前
25秒前
晏纯完成签到,获得积分10
25秒前
汉堡包应助tulip采纳,获得10
27秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847411
求助须知:如何正确求助?哪些是违规求助? 3389982
关于积分的说明 10559880
捐赠科研通 3110410
什么是DOI,文献DOI怎么找? 1714299
邀请新用户注册赠送积分活动 825205
科研通“疑难数据库(出版商)”最低求助积分说明 775339